Predicting Suicides Among US Army Soldiers After Leaving Active Service

兵役 自杀预防 人口学 心理干预 毒物控制 伤害预防 职业安全与健康 医学 队列 老年学 心理学 医疗急救 精神科 地理 内科学 病理 社会学 考古
作者
Chris J. Kennedy,Jaclyn C. Kearns,Joseph C. Geraci,Sarah M. Gildea,Irving Hwang,Andrew J. King,Howard Liu,Alex Luedtke,Brian P. Marx,Santiago Papini,Maria Petukhova,Nancy A. Sampson,Jordan W. Smoller,Charles J. Wolock,Nur Hani Zainal,Murray Stein,Robert J. Ursano,James Wagner,Ronald C. Kessler
出处
期刊:JAMA Psychiatry [American Medical Association]
被引量:3
标识
DOI:10.1001/jamapsychiatry.2024.2744
摘要

Importance The suicide rate of military servicemembers increases sharply after returning to civilian life. Identifying high-risk servicemembers before they leave service could help target preventive interventions. Objective To develop a model based on administrative data for regular US Army soldiers that can predict suicides 1 to 120 months after leaving active service. Design, Setting, and Participants In this prognostic study, a consolidated administrative database was created for all regular US Army soldiers who left service from 2010 through 2019. Machine learning models were trained to predict suicides over the next 1 to 120 months in a random 70% training sample. Validation was implemented in the remaining 30%. Data were analyzed from March 2023 through March 2024. Main outcome and measures The outcome was suicide in the National Death Index. Predictors came from administrative records available before leaving service on sociodemographics, Army career characteristics, psychopathologic risk factors, indicators of physical health, social networks and supports, and stressors. Results Of the 800 579 soldiers in the cohort (84.9% male; median [IQR] age at discharge, 26 [23-33] years), 2084 suicides had occurred as of December 31, 2019 (51.6 per 100 000 person-years). A lasso model assuming consistent slopes over time discriminated as well over all but the shortest risk horizons as more complex stacked generalization ensemble machine learning models. Test sample area under the receiver operating characteristic curve ranged from 0.87 (SE = 0.06) for suicides in the first month after leaving service to 0.72 (SE = 0.003) for suicides over 120 months. The 10% of soldiers with highest predicted risk accounted for between 30.7% (SE = 1.8) and 46.6% (SE = 6.6) of all suicides across horizons. Calibration was for the most part better for the lasso model than the super learner model (both estimated over 120-month horizons.) Net benefit of a model-informed prevention strategy was positive compared with intervene-with-all or intervene-with-none strategies over a range of plausible intervention thresholds. Sociodemographics, Army career characteristics, and psychopathologic risk factors were the most important classes of predictors. Conclusions and relevance These results demonstrated that a model based on administrative variables available at the time of leaving active Army service can predict suicides with meaningful accuracy over the subsequent decade. However, final determination of cost-effectiveness would require information beyond the scope of this report about intervention content, costs, and effects over relevant horizons in relation to the monetary value placed on preventing suicides.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
畅畅完成签到 ,获得积分10
刚刚
Medicovv发布了新的文献求助10
1秒前
汉堡包应助lpylll采纳,获得10
1秒前
2秒前
2秒前
4秒前
朱杏出发布了新的文献求助10
5秒前
5秒前
南鸢发布了新的文献求助10
7秒前
Annqi12378发布了新的文献求助10
7秒前
7秒前
9秒前
乘风完成签到,获得积分10
9秒前
共享精神应助jianxi采纳,获得10
10秒前
薯条派发布了新的文献求助10
10秒前
神勇友易发布了新的文献求助10
12秒前
米朗心发布了新的文献求助10
12秒前
槐序十五完成签到,获得积分10
12秒前
13秒前
dfi应助zzzzzx采纳,获得100
13秒前
abracadd发布了新的文献求助10
15秒前
科研通AI2S应助zhu采纳,获得10
15秒前
weidingge2011发布了新的文献求助10
16秒前
17秒前
17秒前
李健的小迷弟应助李青牛采纳,获得10
18秒前
19秒前
香蕉觅云应助李青牛采纳,获得10
19秒前
sunrase发布了新的文献求助10
19秒前
张亚召完成签到 ,获得积分10
21秒前
明亮菀发布了新的文献求助10
22秒前
whs发布了新的文献求助10
22秒前
Ccccn发布了新的文献求助10
23秒前
布莱克汪发布了新的文献求助10
23秒前
24秒前
科研通AI5应助Demon采纳,获得10
25秒前
朱杏出完成签到,获得积分20
27秒前
永曼发布了新的文献求助10
28秒前
孟筱发布了新的文献求助10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4752253
求助须知:如何正确求助?哪些是违规求助? 4097247
关于积分的说明 12677252
捐赠科研通 3810111
什么是DOI,文献DOI怎么找? 2103598
邀请新用户注册赠送积分活动 1128813
关于科研通互助平台的介绍 1005746