Artificial intelligence-quantified tumour-lymphocyte spatial interaction predicts disease-free survival in resected lung adenocarcinoma: A graph-based, multicentre study

危险系数 腺癌 医学 置信区间 内科学 淋巴细胞 肿瘤科 病理 癌症
作者
Zhengyun Feng,Huan Lin,Zaiyi Liu,Li‐Xu Yan,Yumeng Wang,Bingbing Li,Entao Liu,Chu Han,Zhenwei Shi,Cheng Lu,Zhenbing Liu,Cheng Pang,Zhenhui Li,Yanfen Cui,Xipeng Pan,Xin Chen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:238: 107617-107617 被引量:6
标识
DOI:10.1016/j.cmpb.2023.107617
摘要

A high degree of lymphocyte infiltration is related to superior outcomes amongst patients with lung adenocarcinoma. Recent evidence indicates that the spatial interactions between tumours and lymphocytes also influence the anti-tumour immune responses, but the spatial analysis at the cellular level remains insufficient. We proposed an artificial intelligence-quantified Tumour-Lymphocyte Spatial Interaction score (TLSI-score) by calculating the ratio between the number of spatial adjacent tumour-lymphocyte and the number of tumour cells based on topology cell graph constructed using H&E-stained whole-slide images. The association of TLSI-score with disease-free survival (DFS) was explored in 529 patients with lung adenocarcinoma across three independent cohorts (D1, 275; V1, 139; V2, 115). After adjusting for pTNM stage and other clinicopathologic risk factors, a higher TLSI-score was independently associated with longer DFS than a low TLSI-score in the three cohorts [D1, adjusted hazard ratio (HR), 0.674; 95% confidence interval (CI) 0.463–0.983; p = 0.040; V1, adjusted HR, 0.408; 95% CI 0.223–0.746; p = 0.004; V2, adjusted HR, 0.294; 95% CI 0.130–0.666; p = 0.003]. By integrating the TLSI-score with clinicopathologic risk factors, the integrated model (full model) improves the prediction of DFS in three independent cohorts (C-index, D1, 0.716 vs. 0.701; V1, 0.666 vs. 0.645; V2, 0.708 vs. 0.662) TLSI-score shows the second highest relative contribution to the prognostic prediction model, next to the pTNM stage. TLSI-score can assist in the characterising of tumour microenvironment and is expected to promote individualized treatment and follow-up decision-making in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助XY星雨XY采纳,获得10
1秒前
1秒前
2秒前
英俊的铭应助嗯嗯采纳,获得10
3秒前
出其东门发布了新的文献求助20
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得30
4秒前
学术大拿应助科研通管家采纳,获得10
4秒前
tuanheqi应助科研通管家采纳,获得150
4秒前
Aaron567应助科研通管家采纳,获得20
4秒前
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
刘碰蛋发布了新的文献求助10
5秒前
Fancy应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得30
5秒前
学术大拿应助科研通管家采纳,获得10
5秒前
5秒前
tuanheqi应助科研通管家采纳,获得150
5秒前
Aaron567应助科研通管家采纳,获得20
5秒前
5秒前
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
Fancy应助科研通管家采纳,获得10
6秒前
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778959
求助须知:如何正确求助?哪些是违规求助? 5644592
关于积分的说明 15450766
捐赠科研通 4910444
什么是DOI,文献DOI怎么找? 2642671
邀请新用户注册赠送积分活动 1590372
关于科研通互助平台的介绍 1544741