Artificial intelligence-quantified tumour-lymphocyte spatial interaction predicts disease-free survival in resected lung adenocarcinoma: A graph-based, multicentre study

危险系数 腺癌 医学 置信区间 内科学 淋巴细胞 肿瘤科 病理 癌症
作者
Zhengyun Feng,Huan Lin,Zaiyi Liu,Li‐Xu Yan,Yumeng Wang,Bingbing Li,Entao Liu,Chu Han,Zhenwei Shi,Cheng Lu,Zhenbing Liu,Cheng Pang,Zhenhui Li,Yanfen Cui,Xipeng Pan,Xin Chen
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:238: 107617-107617 被引量:4
标识
DOI:10.1016/j.cmpb.2023.107617
摘要

A high degree of lymphocyte infiltration is related to superior outcomes amongst patients with lung adenocarcinoma. Recent evidence indicates that the spatial interactions between tumours and lymphocytes also influence the anti-tumour immune responses, but the spatial analysis at the cellular level remains insufficient. We proposed an artificial intelligence-quantified Tumour-Lymphocyte Spatial Interaction score (TLSI-score) by calculating the ratio between the number of spatial adjacent tumour-lymphocyte and the number of tumour cells based on topology cell graph constructed using H&E-stained whole-slide images. The association of TLSI-score with disease-free survival (DFS) was explored in 529 patients with lung adenocarcinoma across three independent cohorts (D1, 275; V1, 139; V2, 115). After adjusting for pTNM stage and other clinicopathologic risk factors, a higher TLSI-score was independently associated with longer DFS than a low TLSI-score in the three cohorts [D1, adjusted hazard ratio (HR), 0.674; 95% confidence interval (CI) 0.463–0.983; p = 0.040; V1, adjusted HR, 0.408; 95% CI 0.223–0.746; p = 0.004; V2, adjusted HR, 0.294; 95% CI 0.130–0.666; p = 0.003]. By integrating the TLSI-score with clinicopathologic risk factors, the integrated model (full model) improves the prediction of DFS in three independent cohorts (C-index, D1, 0.716 vs. 0.701; V1, 0.666 vs. 0.645; V2, 0.708 vs. 0.662) TLSI-score shows the second highest relative contribution to the prognostic prediction model, next to the pTNM stage. TLSI-score can assist in the characterising of tumour microenvironment and is expected to promote individualized treatment and follow-up decision-making in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研最厉害的柒柒子完成签到,获得积分10
2秒前
NexusExplorer应助萝卜采纳,获得10
4秒前
李健的小迷弟应助栗子采纳,获得10
5秒前
5秒前
azure发布了新的文献求助10
5秒前
7秒前
年轻的吐司完成签到,获得积分10
9秒前
ZYH发布了新的文献求助10
9秒前
123完成签到,获得积分10
9秒前
9秒前
CipherSage应助邦邦采纳,获得10
10秒前
10秒前
坚定岂愈发布了新的文献求助10
10秒前
大马哥完成签到 ,获得积分10
11秒前
科研通AI2S应助123采纳,获得10
12秒前
13秒前
复杂羊青完成签到,获得积分10
14秒前
无情修杰发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
Zhang发布了新的文献求助10
21秒前
三余完成签到,获得积分10
22秒前
22秒前
善学以致用应助张文静采纳,获得10
23秒前
田様应助无情修杰采纳,获得10
23秒前
23秒前
zzzzz完成签到,获得积分10
24秒前
领导范儿应助azure采纳,获得10
25秒前
29秒前
小二郎应助子车万仇采纳,获得10
29秒前
shuangyanli完成签到,获得积分10
33秒前
derrickZ发布了新的文献求助10
34秒前
35秒前
xiaxiao完成签到,获得积分0
36秒前
38秒前
yerenjie完成签到,获得积分10
38秒前
Zhang完成签到,获得积分10
38秒前
yznfly应助分子筛催化采纳,获得50
38秒前
41秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3902553
求助须知:如何正确求助?哪些是违规求助? 3447341
关于积分的说明 10848471
捐赠科研通 3172587
什么是DOI,文献DOI怎么找? 1753017
邀请新用户注册赠送积分活动 847496
科研通“疑难数据库(出版商)”最低求助积分说明 790006