亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An intelligent fault diagnosis method for rolling bearing using motor stator current signals

方位(导航) 定子 断层(地质) 电流(流体) 计算机科学 控制工程 汽车工程 控制理论(社会学) 人工智能 工程类 机械工程 电气工程 地质学 地震学 控制(管理)
作者
Xiangbiao Ye,Guofu Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 086131-086131 被引量:1
标识
DOI:10.1088/1361-6501/ad4bfc
摘要

Abstract In the diagnosis of rolling bearing faults, the Motor Current Signature Analysis (MCSA) method offers advantages such as low cost, simplicity, and convenience compared to using vibration signals, temperature information, and other diagnostic objects. However, owing to the interference of high-frequency noise, power frequency, and its harmonics in current signals, which can severely affect the accuracy of bearing fault diagnosis, it is extremely challenging to use the original current signals during bearing faults directly for diagnostic purposes. Therefore, this paper proposes an intelligent fault diagnosis method based on the feature reconstruction (FR) method and convolutional neural networks (CNN). This method can achieve high-precision fault diagnosis using single-phase stator current signals from motors as the diagnostic objects. First, the FR method effectively removes the impact of high-frequency noise, supply frequency, and its harmonics from the current signals, while also highlighting subtle fault feature signals to a certain extent. Second, a CNN suitable for learning the characteristics of the current signals was constructed. Through feature extraction, learning, and classification of the current signal samples processed by the FR method, a diagnostic method with a high classification accuracy was obtained. Visualization techniques were used to present the final diagnosis results intuitively. The experimental results demonstrated the highest diagnostic accuracy and average diagnostic accuracy of the proposed method in diagnosing rolling bearing fault types, with an average diagnostic accuracy of approximately 99% for actual faulty bearing samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萝卜特乐发布了新的文献求助10
21秒前
1分钟前
Lainey完成签到,获得积分10
1分钟前
我是老大应助含蓄的荔枝采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
001发布了新的文献求助10
1分钟前
英姑应助含蓄的荔枝采纳,获得10
1分钟前
1121发布了新的文献求助10
2分钟前
在水一方应助Ytgl采纳,获得10
2分钟前
1121完成签到,获得积分10
3分钟前
Akim应助含蓄的荔枝采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
科目三应助duoduoqian采纳,获得10
3分钟前
CipherSage应助Ansong采纳,获得10
3分钟前
3分钟前
duoduoqian发布了新的文献求助10
3分钟前
Ansong发布了新的文献求助20
4分钟前
维生素完成签到,获得积分10
4分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815770
求助须知:如何正确求助?哪些是违规求助? 3359317
关于积分的说明 10402144
捐赠科研通 3077173
什么是DOI,文献DOI怎么找? 1690198
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767713