A robust self-supervised image hashing method for content identification with forensic detection of content-preserving manipulations

计算机科学 散列函数 人工智能 模式识别(心理学) 稳健性(进化) 鉴定(生物学) 机器学习 植物 计算机安全 生物 生物化学 化学 基因
作者
Jesús Fonseca-Bustos,Claudia Feregrino-Uribe,Claudia Feregrino-Uribe
出处
期刊:Neural Networks [Elsevier BV]
卷期号:177: 106357-106357
标识
DOI:10.1016/j.neunet.2024.106357
摘要

Image content identification systems have many applications in industry and academia. In particular, a hash-based content identification system uses a robust image hashing function that computes a short binary identifier summarizing the perceptual content in a picture and is invariant against a set of expected manipulations while being capable of differentiating between different pictures. A common approach to designing these algorithms is crafting a processing pipeline by hand. Unfortunately, once the context changes, the researcher may need to define a new function to adapt. A deep hashing approach exploits the feature learning capabilities in deep networks to generate a feature vector that summarizes the perceptual content in the image, achieving outstanding performance for the image retrieval task, which requires measuring semantic and perceptual similarity between items. However, its application to robust content identification systems is an open area of opportunity. Also, image hashing functions are valuable tools for image authentication. However, to our knowledge, its application to content-preserving manipulation detection for image forensics tasks is still an open research area. In this work, we propose a deep hashing method exploiting the metric learning capabilities in contrastive self-supervised learning with a new modular loss function for robust image hashing. Moreover, we propose a novel approach for content-preserving manipulation detection for image forensics through a sensitivity component in our loss function. We validate our method through extensive experimentation in different data sets and configurations, validating the generalization properties in our work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aman发布了新的文献求助10
1秒前
科研yu完成签到,获得积分10
1秒前
sue发布了新的文献求助10
4秒前
殷勤的砖家关注了科研通微信公众号
4秒前
glj应助甜甜的灵阳采纳,获得10
4秒前
Ori发布了新的文献求助10
5秒前
6秒前
君莫笑发布了新的文献求助10
9秒前
10秒前
在水一方应助废寝忘食采纳,获得10
15秒前
汪少侠完成签到,获得积分10
15秒前
WW完成签到 ,获得积分10
16秒前
16秒前
所所应助邵硕采纳,获得10
18秒前
xhd183完成签到 ,获得积分10
19秒前
科目三应助AbleTF采纳,获得10
19秒前
20秒前
22秒前
狐妖发布了新的文献求助10
23秒前
23秒前
23秒前
23秒前
英姑应助科研通管家采纳,获得10
23秒前
烟花应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
残幻应助科研通管家采纳,获得20
23秒前
Alandia应助科研通管家采纳,获得150
23秒前
Ava应助科研通管家采纳,获得10
23秒前
英俊的铭应助科研通管家采纳,获得10
23秒前
23秒前
彭于晏应助Ori采纳,获得10
24秒前
25秒前
眼睛大书兰完成签到,获得积分10
27秒前
27秒前
28秒前
orixero应助插兜无对手采纳,获得10
28秒前
打打应助163采纳,获得10
28秒前
小杜瘦得快应助淋湿巴黎采纳,获得10
29秒前
狐妖完成签到,获得积分20
30秒前
31秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797603
求助须知:如何正确求助?哪些是违规求助? 3342992
关于积分的说明 10314523
捐赠科研通 3059700
什么是DOI,文献DOI怎么找? 1679083
邀请新用户注册赠送积分活动 806322
科研通“疑难数据库(出版商)”最低求助积分说明 763102