Novel drug discovery: Advancing Alzheimer's therapy through machine learning and network pharmacology

药物发现 药品 药理学 神经科学 医学 心理学 生物信息学 生物
作者
Fahad M. Alshabrmi,Faris F. Aba Alkhayl,Abdur Rehman
出处
期刊:European Journal of Pharmacology [Elsevier]
卷期号:976: 176661-176661 被引量:9
标识
DOI:10.1016/j.ejphar.2024.176661
摘要

Alzheimer's disease (AD), marked by tau tangles and amyloid-beta plaques, leads to cognitive decline. Despite extensive research, its complex etiology remains elusive, necessitating new treatments. This study utilized machine learning (ML) to analyze compounds with neuroprotective potential. This approach exposed the disease's complexity and identified important proteins, namely MTOR and BCL2, as central to the pathogenic network of AD. MTOR regulates neuronal autophagy and survival, whereas BCL2 regulates apoptosis, both of which are disrupted in AD. The identified compounds, including Armepavine, Oprea1_264702,1-cyclopropyl-7-fluoro-8-methoxy-4-oxoquinoline-3-carboxylic acid,(2S)-4'-Hydroxy-5,7,3'-trimethoxyflavan,Oprea1_130514,Sativanone,5-hydroxy-7,8-dimethoxyflavanone,7,4'-Dihydroxy-8,3'-dimethoxyflavanone,N,1-dicyclopropyl-6,Difluoro-Methoxy-Gatifloxacin,6,8-difluoro-1-(2-fluoroethyl),1-ethyl-6-fluoro-7-(4-methylpiperidin-1-yl),Avicenol C, demonstrated potential modulatory effects on these proteins. The potential for synergistic effects of these drugs in treating AD has been revealed via network pharmacology. By targeting numerous proteins at once, these chemicals may provide a more comprehensive therapeutic approach, addressing many aspects of AD's complex pathophysiology. A Molecular docking, dynamic simulation, and Principle Component Analysis have confirmed these drugs' efficacy by establishing substantial binding affinities and interactions with important proteins such as MTOR and BCL2. This evidence implies that various compounds may interact within the AD pathological framework, providing a sophisticated and multifaceted therapy strategy. In conclusion, our study establishes a solid foundation for the use of these drugs in AD therapy. Thus current study highlights the possibility of multi-targeted, synergistic therapeutic approaches in addressing the complex pathophysiology of AD by integrating machine learning, network pharmacology, and molecular docking simulations. This holistic technique not only advances drug development but also opens up new avenues for developing more effective treatments for this difficult and widespread disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实幻姬完成签到,获得积分10
1秒前
孟寐以求发布了新的文献求助10
2秒前
玻璃球完成签到 ,获得积分10
3秒前
风趣霆完成签到,获得积分10
4秒前
Werner完成签到 ,获得积分10
4秒前
轻松的GIGI完成签到,获得积分10
4秒前
淡淡土豆应助陈秋采纳,获得10
4秒前
Jieh完成签到,获得积分10
4秒前
房东家的猫完成签到,获得积分10
6秒前
hlt完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
9秒前
Cylair完成签到,获得积分10
9秒前
浮游应助落花生采纳,获得10
11秒前
浮游应助落花生采纳,获得10
11秒前
机灵纸鹤完成签到 ,获得积分10
11秒前
孟寐以求完成签到,获得积分10
12秒前
张sir完成签到,获得积分10
12秒前
会撒娇的乌冬面完成签到 ,获得积分10
12秒前
花生四烯酸完成签到 ,获得积分10
13秒前
文献高手完成签到 ,获得积分10
13秒前
濮阳盼曼完成签到,获得积分10
13秒前
直率若烟完成签到 ,获得积分10
14秒前
俞无声完成签到 ,获得积分10
15秒前
迷你的傲白完成签到 ,获得积分10
15秒前
16秒前
AA完成签到 ,获得积分10
16秒前
Qing完成签到 ,获得积分10
17秒前
zr1109完成签到,获得积分10
17秒前
虚拟的画板完成签到 ,获得积分10
17秒前
鲸落完成签到 ,获得积分10
20秒前
明理的亦寒完成签到 ,获得积分10
20秒前
纪梵希完成签到,获得积分10
22秒前
bener完成签到,获得积分10
26秒前
枫糖叶落完成签到,获得积分10
26秒前
小高完成签到 ,获得积分10
27秒前
落花生完成签到,获得积分10
27秒前
忐忑的中心完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
32秒前
韶华若锦完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516462
求助须知:如何正确求助?哪些是违规求助? 4609394
关于积分的说明 14515011
捐赠科研通 4546077
什么是DOI,文献DOI怎么找? 2491074
邀请新用户注册赠送积分活动 1472853
关于科研通互助平台的介绍 1444785