Translator attribution of Hongloumeng: using entropy-based features and machining learning algorithm

归属 机械加工 人工智能 熵(时间箭头) 计算机科学 算法 工程类 心理学 机械工程 物理 社会心理学 量子力学
作者
Ruoyu Hu,Gui Wang,Bin Shao
出处
期刊:Digital Scholarship in the Humanities [Oxford University Press]
标识
DOI:10.1093/llc/fqae074
摘要

Abstract This study utilized machine learning algorithms and entropy-based features to identify translators of two English translations of Hongloumeng, a great classical Chinese novel written in the mid-18th century. The translations under examination were completed, respectively, by David Hawkes and the Yangs (Yang Hsien-yi and Gladys Yang). Two feature sets were extracted as input for the identification of translator styles: wordform features (wordform unigrams, bigrams, and trigrams) and part-of-speech (POS) features (POS unigrams, bigrams, and trigrams). Additionally, four machine learning classifiers were tested: linear support vector machines (SVMs), linear discriminant analysis (LDA), random forest (RF), and multilayer perceptron (MLP). Analysis of feature importance and SHAP value identified the most influential features within each classifier. Results showed that LDA achieved the best performance, with 81 per cent accuracy in distinguishing between translations, showing promise for translator identification. In contrast, MLP struggled to reliably differentiate between translations, achieving only 50 per cent accuracy. Furthermore, POS features had the greatest influence in SVM and LDA, while wordform features dominated in RF. SHAP analysis revealed that Hawkes’ translation tended to exhibit higher POS unigram and lower POS trigram entropy compared to the Yangs’. This increased contribution of POS unigrams and trigrams suggests a link to explicitation differences in translation. In summary, the combination of machine learning and entropy-based stylometric features shows potential for automatic translator identification and analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1234567xjy发布了新的文献求助10
2秒前
XNt举报森水垚求助涉嫌违规
3秒前
7秒前
酷波er应助Hanhan_Yu采纳,获得10
7秒前
7秒前
8秒前
9秒前
余峥瑶完成签到 ,获得积分10
11秒前
aaa发布了新的文献求助10
11秒前
刘睿伯完成签到,获得积分20
12秒前
HeyU发布了新的文献求助10
12秒前
momo发布了新的文献求助10
12秒前
小苗完成签到 ,获得积分10
13秒前
Lijia_YAO发布了新的文献求助10
14秒前
悦悦发布了新的文献求助10
14秒前
葡萄萄萄完成签到 ,获得积分10
15秒前
jingcheng完成签到,获得积分10
16秒前
16秒前
顾矜应助Unifate采纳,获得10
16秒前
脑洞疼应助molik采纳,获得10
17秒前
19秒前
19秒前
SppikeFPS完成签到,获得积分10
19秒前
坐雨赏花完成签到 ,获得积分10
20秒前
小湛完成签到 ,获得积分10
20秒前
万能图书馆应助HeyU采纳,获得10
20秒前
Jiang发布了新的文献求助10
21秒前
21秒前
森水垚发布了新的文献求助10
21秒前
22秒前
chenwl完成签到,获得积分10
24秒前
25秒前
oo发布了新的文献求助10
25秒前
Unifate发布了新的文献求助10
27秒前
虚度30年发布了新的文献求助10
29秒前
燕祁完成签到,获得积分10
30秒前
31秒前
一期一会完成签到,获得积分10
33秒前
Thanatos完成签到,获得积分10
33秒前
寒雪发布了新的文献求助10
35秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4154624
求助须知:如何正确求助?哪些是违规求助? 3690606
关于积分的说明 11657682
捐赠科研通 3382510
什么是DOI,文献DOI怎么找? 1856183
邀请新用户注册赠送积分活动 917711
科研通“疑难数据库(出版商)”最低求助积分说明 831105