OPTIMIZING PATIENT-SPECIFIC BONE FINITE ELEMENT ANALYSIS: MESH CONVERGENCE AND MATERIAL GROUPING STRATEGIES

有限元法 趋同(经济学) 计算机科学 结构工程 工程类 经济 经济增长
作者
D. Strack,Nithin Manohar Rayudu,Jan S. Kirschke,Thomas Baum,Karupppasamy Subburaj
标识
DOI:10.1302/1358-992x.2024.18.127
摘要

Introduction Patient-specific biomechanical modeling using Finite Element Analysis (FEA) is pivotal for understanding the structural health of bones, optimizing surgical procedures, assessing outcomes, and validating medical devices, aligning with guidance issued by standards and regulatory bodies. Accurate mapping of image-to-mesh-material is crucial given bone's heterogeneous composition. This study aims to rigorously assess mesh convergence and evaluate the sensitivity of material grouping strategies in quantifying bone strength. Method Subject-specific geometry and nonlinear material properties were derived from computed tomography (CT) scan data of one cadaveric human vertebral body. Linear tetrahedral elements with varying edge lengths between 2mm and 0.9mm were then generated to study the mesh convergence. To compare the effectiveness of different grouping strategies, three approaches were used: Modulus Gaping (a user-defined absolute threshold of Young's modulus ranging from 500 MPa to 1 MPa), Percentual Thresholding (relative parameter thresholds ranging from 50% to 1%), and Adaptive clustering (unsupervised k-means-based clustering ranging from 10 to 200 clusters). Adaptive clustering enables a constant number of unique material properties in cross-specimen studies, improving the validity of results. Result Mesh convergence was evaluated via fracture load and reached at a 1mm mesh size across grouping strategies. All strategies exhibit minimal deviation (within 5%) from individually assigned material parameters, except Modulus Gaping, with a 500 MPa threshold (32% difference). Computational efficiency, measured by runtime, significantly improved with grouping strategies, reducing computational cost by 82 to 94% and unique material count by up to 99%. Conclusion Different grouping strategies offer comparable mesh convergence, highlighting their potential to reduce computational complexity while maintaining accuracy in the biomechanical modeling of bones and suggesting a more efficient approach than individual element materials. The higher efficiency of FEA may increase its applicability in clinical settings with limited computational resources. Further studies are needed to refine grouping parameters and assess their suitability across different subjects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
tt完成签到,获得积分20
3秒前
哈哈哈的一笑完成签到 ,获得积分10
9秒前
10秒前
小宁完成签到,获得积分20
10秒前
科研通AI5应助tt采纳,获得10
14秒前
elous发布了新的文献求助10
14秒前
18秒前
jenningseastera应助陆又柔采纳,获得10
19秒前
JamesPei应助wss123456采纳,获得10
21秒前
科研刘完成签到 ,获得积分10
23秒前
25秒前
28秒前
29秒前
吴可之发布了新的文献求助10
34秒前
37秒前
翊然甜周完成签到,获得积分10
38秒前
mmy完成签到 ,获得积分10
39秒前
吴可之完成签到,获得积分10
39秒前
十个qin天发布了新的文献求助10
43秒前
临界给TrinhTran2001的求助进行了留言
47秒前
Ava应助elous采纳,获得10
49秒前
50秒前
思源应助十个qin天采纳,获得10
51秒前
小k完成签到 ,获得积分10
53秒前
难过的曼柔完成签到,获得积分20
56秒前
灰化土发布了新的文献求助10
56秒前
1分钟前
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
bc应助科研通管家采纳,获得30
1分钟前
jason发布了新的文献求助10
1分钟前
热爱科研的小白鼠完成签到,获得积分20
1分钟前
000完成签到,获得积分10
1分钟前
1分钟前
1分钟前
简单刺猬完成签到,获得积分10
1分钟前
1分钟前
玄音完成签到,获得积分10
1分钟前
蓝桥发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217326
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668059
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385