Multimodal deep learning fusion of ultrafast-DCE MRI and clinical information for breast lesion classification

人工智能 深度学习 病变 计算机科学 乳腺肿瘤 双雷达 模式识别(心理学) 融合 放射科 医学物理学 医学 乳腺摄影术 乳腺癌 病理 内科学 癌症 语言学 哲学
作者
Belinda Lokaj,Valentin Durand de Gevigney,Dahila-Amal Djema,Jamil Zaghir,Jean-Philippe Goldman,Mina Bjelogrlic,Hugues Turbé,Karen Kinkel,Christian Lovis,Jérôme Schmid
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:188: 109721-109721
标识
DOI:10.1016/j.compbiomed.2025.109721
摘要

Breast cancer is the most common cancer worldwide, and magnetic resonance imaging (MRI) constitutes a very sensitive technique for invasive cancer detection. When reviewing breast MRI examination, clinical radiologists rely on multimodal information, composed of imaging data but also information not present in the images such as clinical information. Most machine learning (ML) approaches are not well suited for multimodal data. However, attention-based architectures, such as Transformers, are flexible and therefore good candidates for integrating multimodal data. The aim of this study was to develop and evaluate a novel multimodal deep learning (DL) model combining ultrafast dynamic contrast-enhanced (UF-DCE) MRI images, lesion characteristics and clinical information for breast lesion classification. From 2019 to 2023, UF-DCE breast images and radiology reports of 240 patients were retrospectively collected from a single clinical center and annotated. Imaging data were constituted of volumes of interest (VOI) extracted around segmented lesions. Non-imaging data were constituted of both clinical (categorical) and geometrical (scalar) data. Clinical data were extracted from annotated reports and were associated to their corresponding lesions. We compared the diagnostic performances of traditional ML methods for non-imaging data, an image model based on the DL architecture, and a novel Transformer-based architecture, the Multimodal Sieve Transformer with Vision Transformer encoder (MMST-V). The final dataset included 987 lesions (280 benign, 121 malignant lesions, and 586 benign lymph nodes) and 1081 reports. For classification with non-imaging data, scalar data had a greater influence on performances of lesion classification (Area under the receiver operating characteristic curve (AUROC) = 0.875 ± 0.042) than categorical data (AUROC = 0.680 ± 0.060). MMST-V achieved better performances (AUROC = 0.928 ± 0.027) than classification based on non-imaging data (AUROC = 0.900 ± 0.045), and imaging data only (AUROC = 0.863 ± 0.025). The proposed MMST-V is an adaptative approach that can consider redundant information provided by multimodal information. It demonstrated better performances than unimodal methods. Results highlight that the combination of clinical patient data and detailed lesion information as additional clinical knowledge enhances the diagnostic performances of UF-DCE breast MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助FunF采纳,获得10
1秒前
1秒前
猪猪侠发布了新的文献求助10
1秒前
NexusExplorer应助jbhb采纳,获得10
2秒前
aaa发布了新的文献求助10
2秒前
英俊的铭应助Liu采纳,获得10
3秒前
4秒前
4秒前
6秒前
大尾巴白完成签到,获得积分10
6秒前
李健的小迷弟应助陈雷采纳,获得10
7秒前
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
老实蝴蝶发布了新的文献求助10
8秒前
8秒前
墨清烟完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
grs完成签到 ,获得积分10
11秒前
12秒前
13秒前
狂野忆文发布了新的文献求助10
13秒前
狂野忆文发布了新的文献求助10
13秒前
狂野忆文发布了新的文献求助10
13秒前
狂野忆文发布了新的文献求助10
13秒前
狂野忆文发布了新的文献求助10
13秒前
狂野忆文发布了新的文献求助10
13秒前
狂野忆文发布了新的文献求助10
13秒前
狂野忆文发布了新的文献求助10
13秒前
狂野忆文发布了新的文献求助10
13秒前
狂野忆文发布了新的文献求助10
13秒前
整齐荟发布了新的文献求助10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978025
求助须知:如何正确求助?哪些是违规求助? 3522174
关于积分的说明 11211799
捐赠科研通 3259432
什么是DOI,文献DOI怎么找? 1799614
邀请新用户注册赠送积分活动 878477
科研通“疑难数据库(出版商)”最低求助积分说明 806918