Multimodal deep learning fusion of ultrafast-DCE MRI and clinical information for breast lesion classification

人工智能 深度学习 病变 计算机科学 乳腺肿瘤 双雷达 模式识别(心理学) 融合 放射科 医学物理学 医学 乳腺摄影术 乳腺癌 病理 内科学 癌症 语言学 哲学
作者
Belinda Lokaj,Valentin Durand de Gevigney,Dahila-Amal Djema,Jamil Zaghir,Jean-Philippe Goldman,Mina Bjelogrlic,Hugues Turbé,Karen Kinkel,Christian Lovis,Jérôme Schmid
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:188: 109721-109721
标识
DOI:10.1016/j.compbiomed.2025.109721
摘要

Breast cancer is the most common cancer worldwide, and magnetic resonance imaging (MRI) constitutes a very sensitive technique for invasive cancer detection. When reviewing breast MRI examination, clinical radiologists rely on multimodal information, composed of imaging data but also information not present in the images such as clinical information. Most machine learning (ML) approaches are not well suited for multimodal data. However, attention-based architectures, such as Transformers, are flexible and therefore good candidates for integrating multimodal data. The aim of this study was to develop and evaluate a novel multimodal deep learning (DL) model combining ultrafast dynamic contrast-enhanced (UF-DCE) MRI images, lesion characteristics and clinical information for breast lesion classification. From 2019 to 2023, UF-DCE breast images and radiology reports of 240 patients were retrospectively collected from a single clinical center and annotated. Imaging data were constituted of volumes of interest (VOI) extracted around segmented lesions. Non-imaging data were constituted of both clinical (categorical) and geometrical (scalar) data. Clinical data were extracted from annotated reports and were associated to their corresponding lesions. We compared the diagnostic performances of traditional ML methods for non-imaging data, an image model based on the DL architecture, and a novel Transformer-based architecture, the Multimodal Sieve Transformer with Vision Transformer encoder (MMST-V). The final dataset included 987 lesions (280 benign, 121 malignant lesions, and 586 benign lymph nodes) and 1081 reports. For classification with non-imaging data, scalar data had a greater influence on performances of lesion classification (Area under the receiver operating characteristic curve (AUROC) = 0.875 ± 0.042) than categorical data (AUROC = 0.680 ± 0.060). MMST-V achieved better performances (AUROC = 0.928 ± 0.027) than classification based on non-imaging data (AUROC = 0.900 ± 0.045), and imaging data only (AUROC = 0.863 ± 0.025). The proposed MMST-V is an adaptative approach that can consider redundant information provided by multimodal information. It demonstrated better performances than unimodal methods. Results highlight that the combination of clinical patient data and detailed lesion information as additional clinical knowledge enhances the diagnostic performances of UF-DCE breast MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
王莉发布了新的文献求助20
刚刚
研友_nPKvaL发布了新的文献求助10
刚刚
神揽星辰入梦完成签到,获得积分10
1秒前
聂浩发布了新的文献求助100
1秒前
左彦完成签到,获得积分10
1秒前
懵懂的子骞完成签到 ,获得积分10
2秒前
wq完成签到,获得积分10
3秒前
3秒前
4秒前
GXX完成签到,获得积分10
4秒前
Jasper应助yybg采纳,获得10
4秒前
汉堡包应助成就绿海采纳,获得10
4秒前
乌兰巴托没有海完成签到,获得积分10
5秒前
猪猪hero发布了新的文献求助10
6秒前
9秒前
9秒前
科研通AI5应助呵呵小开心采纳,获得10
9秒前
秦文静完成签到,获得积分20
10秒前
木瓜完成签到,获得积分10
11秒前
Kidmuse完成签到,获得积分10
11秒前
Hello应助研友_nPKvaL采纳,获得10
12秒前
12秒前
虾滑丸子完成签到,获得积分10
12秒前
Jasper应助裴裴采纳,获得10
12秒前
Waksman发布了新的文献求助10
13秒前
14秒前
森林木发布了新的文献求助10
15秒前
CodeCraft应助你还是要加油采纳,获得10
15秒前
大聪发布了新的文献求助10
15秒前
科研通AI5应助lizhiqian2024采纳,获得10
16秒前
深情安青应助负责铅笔采纳,获得10
17秒前
BIG川完成签到,获得积分10
17秒前
17秒前
燕临峰发布了新的文献求助10
17秒前
17秒前
曹操的曹完成签到,获得积分10
18秒前
唐唐完成签到,获得积分10
18秒前
平淡的尔琴完成签到 ,获得积分10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782959
求助须知:如何正确求助?哪些是违规求助? 3328287
关于积分的说明 10235585
捐赠科研通 3043430
什么是DOI,文献DOI怎么找? 1670491
邀请新用户注册赠送积分活动 799731
科研通“疑难数据库(出版商)”最低求助积分说明 759050