Developing practical machine learning survival models to identify high-risk patients for in-hospital mortality following traumatic brain injury

创伤性脑损伤 医学 伤害预防 急诊医学 重症监护医学 毒物控制 生物信息学 医疗急救 生物 精神科
作者
Aref Andishgar,Maziyar Rismani,Sina Bazmi,Zahra Mohammadi,Sedighe Hooshmandi,Behnam Kian,Amin Niakan,Reza Taheri,Hosseinali Khalili,Roohallah Alizadehsani
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1) 被引量:1
标识
DOI:10.1038/s41598-025-89574-0
摘要

Machine learning (ML) offers precise predictions and could improve patient care, potentially replacing traditional scoring systems. A retrospective study at Emtiaz Hospital analyzed 3,180 traumatic brain injury (TBI) patients. Nineteen variables were assessed using ML algorithms to predict outcomes. Data preparation addressed missing values and balancing methods corrected imbalances. Model building involved training-test splits, survival analysis, and ML algorithms like Random Survival Forest (RSF) and Gradient Boosting. Feature importance was examined, with patient risk stratification guiding survival analysis. The best-performing model, RSF with ROS resampling, achieved the highest mean AUC of 0.80, the lowest IBS of 0.11, and IPCW c-index of 0.79, maintaining strong predictive ability over time. Top predictors for in-hospital mortality included age, GCS, pupil condition, PTT, IPH, and Rotterdam score, with high variations in predictive abilities over time. A risk stratification cut-off value of 63.34 separated patients into low and high-risk categories, with Kaplan–Meier curves showing significant survival differences. Our high-performing predictive model, built on first-day features, enables time-dependent risk assessment for tailored interventions and monitoring. Our study highlights the feasibility of AI tools in clinical settings, offering superior predictive accuracy and enhancing patient care for TBI cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单十三发布了新的文献求助100
4秒前
ikun完成签到,获得积分10
4秒前
小鹿5460发布了新的文献求助200
5秒前
QS完成签到,获得积分10
6秒前
失眠醉易应助我姓王采纳,获得20
7秒前
元谷雪发布了新的文献求助10
10秒前
勤劳的以蓝完成签到,获得积分10
13秒前
14秒前
小六完成签到,获得积分10
15秒前
koutianle完成签到 ,获得积分10
16秒前
16秒前
大模型应助Phi.Wang采纳,获得10
18秒前
JamesPei应助小羊睡饱了采纳,获得10
18秒前
落叶捎来讯息完成签到 ,获得积分10
21秒前
研友_VZG7GZ应助Bressanone采纳,获得10
21秒前
时光完成签到,获得积分10
22秒前
呜啦啦啦完成签到,获得积分10
24秒前
25秒前
头头完成签到,获得积分10
26秒前
李新光完成签到 ,获得积分10
26秒前
乐乐应助Darren采纳,获得10
26秒前
28秒前
ding应助cure采纳,获得20
29秒前
小熊发布了新的文献求助10
29秒前
Luchy完成签到 ,获得积分10
31秒前
成就书雪完成签到,获得积分0
32秒前
Phi.Wang发布了新的文献求助10
33秒前
顺利毕业发布了新的文献求助10
33秒前
36秒前
元谷雪发布了新的文献求助10
37秒前
kento发布了新的文献求助30
40秒前
搜集达人应助安详芝麻采纳,获得10
42秒前
NN应助安静的睿渊采纳,获得10
42秒前
43秒前
46秒前
46秒前
ChenWei给ChenWei的求助进行了留言
47秒前
顺利毕业完成签到,获得积分20
48秒前
48秒前
云烟成雨完成签到,获得积分10
48秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
Enhance the effectiveness of affiliate marketing on Tiktok for young people 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831479
求助须知:如何正确求助?哪些是违规求助? 3373689
关于积分的说明 10481025
捐赠科研通 3093675
什么是DOI,文献DOI怎么找? 1702910
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771307