Multistage Graph Convolutional Network With Spatial Attention for Multivariate Time Series Imputation

多元统计 计算机科学 插补(统计学) 图形 系列(地层学) 数据挖掘 人工智能 模式识别(心理学) 统计 机器学习 数学 缺少数据 理论计算机科学 地质学 古生物学
作者
Qianyi Chen,Jiannong Cao,Yu Yang,Wanyu Lin,Sumei Wang,You‐Wu Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3486349
摘要

In multivariate time series (MTS) analysis, data loss is a critical issue that degrades analytical model performance and impairs downstream tasks such as structural health monitoring (SHM) and traffic flow monitoring. In real-world applications, MTS is usually collected by multiple types of sensors, making MTS and correlations between variates heterogeneous. However, existing MTS imputation methods overlook the heterogeneous correlations by manipulating heterogeneous MTS as a homogeneous entity, leading to inaccurate imputation results. Besides, correlations between different data types vary due to ever-changing environmental conditions, forming dynamic correlations in MTS. How to properly learn the hidden correlation from heterogeneous MTS for accurate data imputation remains unresolved. To solve the problem, we propose a multistage graph convolutional network with spatial attention (MSA-GCN). In the first stage, we decompose heterogeneous MTS into several clusters with homogeneous data collected from identical sensor types and learn intracluster correlations. Then, we devise a GCN with spatial attention to explore dynamic intercluster correlations, which is the second stage of MSA-GCN. In the last stage, we decode the learned features from previous stages via stacked convolutional neural networks. We jointly train these three-stage models to predict the missing data in MTS. Leveraging this multistage architecture and spatial attention mechanism makes MSA-GCN effectively learn heterogeneous and dynamic correlations among MTS, resulting in superior imputation performance. We tested MSA-GCN with the monitoring data from a large-span bridge and Wetterstation weather dataset. The results affirm its superiority over baseline models, demonstrating its enhanced accuracy in reducing imputation errors across diverse datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
海的呼唤完成签到,获得积分10
2秒前
亚当完成签到 ,获得积分10
2秒前
3秒前
zqw完成签到,获得积分10
4秒前
罗英完成签到,获得积分10
4秒前
6秒前
bkagyin应助老武采纳,获得10
6秒前
bkagyin应助doctor_loong采纳,获得10
6秒前
小小二发布了新的文献求助30
7秒前
科研通AI5应助zhaoxiao采纳,获得10
8秒前
9秒前
10秒前
10秒前
无花果应助胖哥采纳,获得10
10秒前
乐乐应助bigfish采纳,获得10
11秒前
12秒前
杨好圆完成签到,获得积分10
12秒前
allia完成签到 ,获得积分10
12秒前
12秒前
从心从心完成签到,获得积分10
13秒前
13秒前
充电宝应助DaLu采纳,获得10
13秒前
zhu发布了新的文献求助10
13秒前
蛋挞蛋挞完成签到,获得积分10
13秒前
小笼包完成签到,获得积分10
14秒前
14秒前
DVD完成签到 ,获得积分10
15秒前
神勇秋白发布了新的文献求助10
16秒前
Banff发布了新的文献求助10
16秒前
sun707433743发布了新的文献求助10
18秒前
baibaibai发布了新的文献求助10
18秒前
19秒前
Yan发布了新的文献求助10
19秒前
22秒前
凡凡发布了新的文献求助10
23秒前
23秒前
zhaoxiaoyan完成签到,获得积分10
23秒前
我爱陶子完成签到 ,获得积分10
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812690
求助须知:如何正确求助?哪些是违规求助? 3357256
关于积分的说明 10385522
捐赠科研通 3074464
什么是DOI,文献DOI怎么找? 1688791
邀请新用户注册赠送积分活动 812346
科研通“疑难数据库(出版商)”最低求助积分说明 767006