338 Rational design of pH-dependent MSLN-targeting VHH for CAR-T therapy

计算机科学
作者
Lu Zhang,Xinhao Wang,Jing Yu,Bing Han,F. Gong,Jiaguo Li,Jun Guo,Weimin Zhu,Wenfeng Xu
标识
DOI:10.1136/jitc-2024-sitc2024.0338
摘要

Background

CAR-T cell therapies have achieved tremendous progress in hematological tumors; however, limited efficacy was observed in solid tumors. One of the critical challenges in solid tumors was the risk of clinically on target off tumor toxicity (OTOT) due to the recognition of normal tissues expressing the target antigen. The extracellular acidic characteristic of tumor tissues presents a novel mechanism to achieve target specificity.

Methods

In this study, we employed a structure-based computational approach to engineer anti-MSLN (mesothelin) VHHs with selective binding under acidic tumor microenvironment condition using methods developed as part of VHHMAb® platform. Through in silico dual-pH His/Asp/Glu-scanning mutagenesis of the complementarity-determining regions (CDRs) and paratope amino acids, we optimized the VHH for acid pH selectivity.

Results

Testing of 20 designed variants identified four variants with more than 5-fold binding selectivity toward acidic pH. Notably, one variant (MT001) exhibited significant loss of binding at physiological pH while retaining binding activity under acidic condition in protein binding assays such as SPR. Similar pH-dependent behavior was confirmed using FACS assays at the cellular level. Furthermore, when incorporated into a chimeric antigen receptor (CAR) construct, MT001 conferred pH-dependent cytotoxicity to CAR-T cells, with enhanced cell-killing efficiency at acidic pH compared to neutral pH. This pH dependence was also observed in other CAR-T activation measures, such as CAR-T cell expansion and cytokine release after co-culture with MSLN+ tumor cell lines.

Conclusions

This study demonstrates the feasibility of computational optimization of antibodies for selectively targeting the acidic tumor microenvironment, representing a potential approach for developing safer CAR-T therapeutics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拜拜拜仁完成签到,获得积分10
刚刚
万能图书馆应助困困包采纳,获得10
3秒前
5秒前
量子星尘发布了新的文献求助10
8秒前
呆啊完成签到,获得积分10
8秒前
李健的小迷弟应助牛牛牛采纳,获得10
9秒前
锋锋发布了新的文献求助10
10秒前
月神满月发布了新的文献求助10
10秒前
科研通AI5应助dream采纳,获得30
11秒前
12秒前
13秒前
yf完成签到 ,获得积分10
14秒前
讨厌的十九岁完成签到,获得积分10
14秒前
万能图书馆应助此时此刻采纳,获得10
15秒前
17秒前
18秒前
壮观人达发布了新的文献求助10
18秒前
大力出奇迹完成签到,获得积分10
19秒前
热心晓丝发布了新的文献求助10
19秒前
liuhang完成签到,获得积分10
20秒前
20秒前
20秒前
哈哈哈哈发布了新的文献求助10
21秒前
尹天扬发布了新的文献求助10
22秒前
22秒前
科研通AI2S应助大鹏吃不饱采纳,获得10
22秒前
丘比特应助chuan采纳,获得10
22秒前
23秒前
zhouyunan完成签到,获得积分10
23秒前
英姑应助晚风千千采纳,获得10
24秒前
24秒前
清脆松发布了新的文献求助10
25秒前
此时此刻发布了新的文献求助10
28秒前
28秒前
陈小瑜完成签到,获得积分10
29秒前
dream发布了新的文献求助30
29秒前
JHY发布了新的文献求助10
30秒前
领导范儿应助17采纳,获得10
30秒前
斯文败类应助科研通管家采纳,获得10
31秒前
量子星尘发布了新的文献求助10
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4240348
求助须知:如何正确求助?哪些是违规求助? 3774134
关于积分的说明 11852146
捐赠科研通 3429464
什么是DOI,文献DOI怎么找? 1882300
邀请新用户注册赠送积分活动 934174
科研通“疑难数据库(出版商)”最低求助积分说明 840862