亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Novel approach for KrF chemically amplified resist optimization assisted by deep learning

抵抗 材料科学 纳米技术 光电子学 图层(电子)
作者
Chen Tang,Toshiaki Tanaka,Atsushi Sekiguchi,Yoshihiko Hirai,Masaaki Yasuda
出处
期刊:Journal of vacuum science and technology [American Vacuum Society]
卷期号:42 (6) 被引量:1
标识
DOI:10.1116/6.0004096
摘要

The development of chemically amplified resists requires many experiments to optimize the chemical composition, which includes the type of monomer molecules and their component ratios, initiator concentration, and process conditions. In addition, the optimization process requires extensive knowledge and experience. In this paper, we apply deep learning to predict the exposure properties, such as sensitivity and contrast, of KrF chemically amplified resists and to optimize the ratio of monomer components. The experimental data are used to predict photoresist development properties by deep learning using in-house code. To achieve this goal, we synthesized several photoresist resins with different proportions. Each resin was then used to prepare photoresist formulations, which were subsequently subjected to exposure and development testing under various energy conditions. Using the film thickness data obtained, we trained our deep learning system to more comprehensively predict the exposure and development curves of photoresists under different resin component conditions. The results of validation experiments showed that the predicted results were consistent with the experimental results, and the predictions for the exposure and development characteristics of different monomer component ratios were quite accurate, confirming that the deep learning outcomes possess high credibility and feasibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助icoo采纳,获得10
1秒前
ceeray23发布了新的文献求助20
2秒前
AneyWinter66应助七大洋的风采纳,获得10
3秒前
11秒前
12A发布了新的文献求助10
16秒前
Ashao完成签到 ,获得积分10
34秒前
40秒前
李健应助科研通管家采纳,获得10
48秒前
慕青应助科研通管家采纳,获得10
48秒前
1分钟前
王王碎冰冰应助一周采纳,获得10
1分钟前
leilei完成签到 ,获得积分10
1分钟前
zh完成签到,获得积分10
1分钟前
yl完成签到 ,获得积分10
1分钟前
yf完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
曦耀发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
英俊的铭应助ceeray23采纳,获得20
3分钟前
QF2026关注了科研通微信公众号
3分钟前
yuan完成签到,获得积分10
4分钟前
4分钟前
4分钟前
曦耀发布了新的文献求助10
4分钟前
4分钟前
4分钟前
ceeray23发布了新的文献求助20
4分钟前
aaa5a123完成签到 ,获得积分10
5分钟前
5分钟前
kuoping完成签到,获得积分0
5分钟前
icoo发布了新的文献求助10
5分钟前
Criminology34举报火乐乐求助涉嫌违规
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628282
求助须知:如何正确求助?哪些是违规求助? 4716386
关于积分的说明 14963951
捐赠科研通 4785999
什么是DOI,文献DOI怎么找? 2555502
邀请新用户注册赠送积分活动 1516781
关于科研通互助平台的介绍 1477332