Novel approach for KrF chemically amplified resist optimization assisted by deep learning

抵抗 材料科学 纳米技术 光电子学 图层(电子)
作者
Chen Tang,Toshiaki Tanaka,Atsushi Sekiguchi,Yoshihiko Hirai,Masaaki Yasuda
出处
期刊:Journal of vacuum science and technology [American Vacuum Society]
卷期号:42 (6) 被引量:1
标识
DOI:10.1116/6.0004096
摘要

The development of chemically amplified resists requires many experiments to optimize the chemical composition, which includes the type of monomer molecules and their component ratios, initiator concentration, and process conditions. In addition, the optimization process requires extensive knowledge and experience. In this paper, we apply deep learning to predict the exposure properties, such as sensitivity and contrast, of KrF chemically amplified resists and to optimize the ratio of monomer components. The experimental data are used to predict photoresist development properties by deep learning using in-house code. To achieve this goal, we synthesized several photoresist resins with different proportions. Each resin was then used to prepare photoresist formulations, which were subsequently subjected to exposure and development testing under various energy conditions. Using the film thickness data obtained, we trained our deep learning system to more comprehensively predict the exposure and development curves of photoresists under different resin component conditions. The results of validation experiments showed that the predicted results were consistent with the experimental results, and the predictions for the exposure and development characteristics of different monomer component ratios were quite accurate, confirming that the deep learning outcomes possess high credibility and feasibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七月完成签到,获得积分10
刚刚
1秒前
lll完成签到 ,获得积分10
1秒前
NN发布了新的文献求助10
1秒前
1秒前
活泼天晴完成签到,获得积分10
1秒前
花开富贵发布了新的文献求助10
2秒前
Ann发布了新的文献求助10
2秒前
2秒前
3秒前
沉静的安青完成签到 ,获得积分10
4秒前
苗条的麦片完成签到,获得积分10
4秒前
超级灰狼完成签到 ,获得积分10
5秒前
七月发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
科目三应助略略略采纳,获得10
7秒前
芒果柠檬发布了新的文献求助10
7秒前
标致的白桃完成签到,获得积分10
8秒前
英姑应助高兴的思烟采纳,获得10
8秒前
顺利的语风完成签到,获得积分10
8秒前
dkjg完成签到 ,获得积分10
8秒前
WangJ1018发布了新的文献求助10
9秒前
10秒前
10秒前
12秒前
大模型应助Ann采纳,获得10
12秒前
自觉曼岚完成签到,获得积分10
12秒前
成就小懒虫完成签到,获得积分10
12秒前
Henry完成签到,获得积分10
12秒前
123zyx发布了新的文献求助10
13秒前
兔子发布了新的文献求助10
13秒前
Mr鹿发布了新的文献求助10
13秒前
13秒前
月月发布了新的文献求助10
14秒前
科研通AI6应助内向的笑晴采纳,获得10
14秒前
14秒前
高永康应助二哈啃海棠采纳,获得10
14秒前
高兴的思烟完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5265235
求助须知:如何正确求助?哪些是违规求助? 4425261
关于积分的说明 13776088
捐赠科研通 4300620
什么是DOI,文献DOI怎么找? 2359877
邀请新用户注册赠送积分活动 1355884
关于科研通互助平台的介绍 1317234