Considering ensemble spread improves rainfall forecast post‐processing

气象学 气候学 环境科学 地质学 地理
作者
Quan J. Wang,Zeqing Huang,David Robertson,Andrew Schepen,James Bennett,Yong Song
出处
期刊:Quarterly Journal of the Royal Meteorological Society [Wiley]
被引量:2
标识
DOI:10.1002/qj.4925
摘要

Abstract Post‐processing is an essential step in improving rainfall forecasts from numerical weather prediction (NWP) models for hydrological prediction. While NWP models provide informative ensemble forecasts, this paper concentrates on unravelling the role of ensemble spread in rainfall forecast post‐processing. The ensemble link functions (ELFs) post‐processing method is developed by employing the log‐sinh transformation to normalise the skewed and censored rainfall data and linking the predictive distribution to the mean and spread of ensemble forecasts. We apply the ELFs and Bayesian joint probability modelling approach (BJP) to calibrate ensemble precipitation forecasts from the European Centre for Medium‐range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS). We compare ELFs to BJP, which only takes the ensemble mean as an input. While both the ELFs and BJP can reduce bias and improve reliability, we show that ELFs tends to outperform the BJP in improving forecast skill in over 50% of the cases examined. It is found that the BJP tends to overestimate forecasts for extreme events, diminishing forecast skill and that the consideration of raw ensemble spread in the ELFs contributes to reliable forecasts. The most substantial skill improvement of the ELFs over BJP is observed for a moderate level of underlying skill in the raw forecasts, typically corresponding to lead times from three to seven days. Overall, ELFs effectively use information from both the ensemble mean and spread to calibrate NWP rainfall forecasts more effectively than can be achieved when ensemble spread is ignored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻花卷完成签到,获得积分10
1秒前
溶脂发布了新的文献求助10
2秒前
2秒前
杀出个黎明应助无语采纳,获得10
2秒前
sasa完成签到,获得积分10
3秒前
科研通AI5应助鸭梨采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
任性静祝完成签到 ,获得积分10
9秒前
梨理栗完成签到,获得积分10
13秒前
macboy完成签到,获得积分10
16秒前
翠花儿应助科研通管家采纳,获得30
21秒前
21秒前
丘比特应助科研通管家采纳,获得10
21秒前
大个应助科研通管家采纳,获得10
21秒前
英姑应助科研通管家采纳,获得20
21秒前
打打应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
21秒前
22秒前
22秒前
22秒前
22秒前
22秒前
22秒前
25秒前
英俊的铭应助自由的聋五采纳,获得10
25秒前
共享精神应助终陌采纳,获得10
25秒前
不敢装睡发布了新的文献求助200
26秒前
平淡凡柔发布了新的文献求助10
26秒前
命运发布了新的文献求助20
27秒前
量子星尘发布了新的文献求助10
27秒前
Boren完成签到,获得积分10
27秒前
28秒前
29秒前
30秒前
32秒前
情怀应助平淡凡柔采纳,获得10
32秒前
yls完成签到,获得积分10
33秒前
33秒前
34秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864825
求助须知:如何正确求助?哪些是违规求助? 3407281
关于积分的说明 10653582
捐赠科研通 3131349
什么是DOI,文献DOI怎么找? 1726953
邀请新用户注册赠送积分活动 832100
科研通“疑难数据库(出版商)”最低求助积分说明 780163