Artificial Neural Networks: A New Frontier in Dental Tissue Regeneration

再生(生物学) 边疆 人工神经网络 组织工程 工程类 计算机科学 人工智能 生物 生物医学工程 地理 细胞生物学 考古
作者
Nurul Hafizah Mohd Nor,Nur Izzati Mansor,Nur Asmadayana Hasim
出处
期刊:Tissue Engineering Part B-reviews [Mary Ann Liebert, Inc.]
被引量:1
标识
DOI:10.1089/ten.teb.2024.0216
摘要

In the realm of dental tissue regeneration research, various constraints exist such as the potential variance in cell quality, potency arising from differences in donor tissue and tissue microenvironment, the difficulties associated with sustaining long-term and large-scale cell expansion while preserving stemness and therapeutic attributes, as well as the need for extensive investigation into the enduring safety and effectiveness in clinical settings. The adoption of artificial intelligence (AI) technologies has been suggested as a means to tackle these challenges. This is because, tissue regeneration research could be advanced through the use of diagnostic systems that incorporate mining methods such as neural networks (NN), fuzzy, predictive modeling, genetic algorithms, machine learning (ML), cluster analysis, and decision trees. This article seeks to offer foundational insights into a subset of AI referred to as artificial neural networks (ANNs) and assess their potential applications as essential decision-making support tools in the field of dentistry, with a particular focus on tissue engineering research. Although ANNs may initially appear complex and resource intensive, they have proven to be effective in laboratory and therapeutic settings. This expert system can be trained using clinical data alone, enabling their deployment in situations where rule-based decision-making is impractical. As ANNs progress further, it is likely to play a significant role in revolutionizing dental tissue regeneration research, providing promising results in streamlining dental procedures and improving patient outcomes in the clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rayray完成签到,获得积分10
刚刚
Akim应助lullaby采纳,获得10
1秒前
1秒前
1秒前
Soon完成签到,获得积分10
2秒前
老Mark完成签到,获得积分10
2秒前
joe_liu发布了新的文献求助10
2秒前
FashionBoy应助爱新觉罗胤禛采纳,获得10
2秒前
木木 12完成签到,获得积分10
2秒前
吨吨完成签到,获得积分10
3秒前
奋斗草莓发布了新的文献求助10
4秒前
高强发布了新的文献求助10
4秒前
4秒前
yulong完成签到,获得积分10
5秒前
合适的柏柳完成签到,获得积分10
5秒前
斯文麦片完成签到 ,获得积分10
5秒前
5秒前
jarenthar完成签到 ,获得积分10
6秒前
舒适雪糕完成签到,获得积分10
6秒前
李雪完成签到,获得积分10
6秒前
calm发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
元复天完成签到 ,获得积分10
8秒前
天宁发布了新的文献求助10
8秒前
ED关闭了ED文献求助
8秒前
痞子毛完成签到,获得积分10
9秒前
上冬完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助30
9秒前
慕青应助房天川采纳,获得30
10秒前
驴小兔子完成签到,获得积分10
10秒前
张风琴发布了新的文献求助10
10秒前
深情安青应助哈哈哈哈采纳,获得10
11秒前
向日葵完成签到,获得积分10
11秒前
Carolejane完成签到 ,获得积分10
11秒前
YXYWZMSZ完成签到,获得积分0
11秒前
123完成签到,获得积分20
11秒前
英姑应助勤劳的鸡采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4306423
求助须知:如何正确求助?哪些是违规求助? 3828746
关于积分的说明 11981209
捐赠科研通 3469450
什么是DOI,文献DOI怎么找? 1902588
邀请新用户注册赠送积分活动 950092
科研通“疑难数据库(出版商)”最低求助积分说明 852031