Neighborhood Topology-Aware Knowledge Graph Learning and Microbial Preference Inferring for Drug-Microbe Association Prediction

计算机科学 图形 利用 联想(心理学) 语义学(计算机科学) 网络拓扑 人工智能 理论计算机科学 代表(政治) 机器学习 拓扑(电路) 数学 心理学 计算机安全 组合数学 政治 政治学 法学 心理治疗师 程序设计语言 操作系统
作者
Jing Gu,Tiangang Zhang,Yihang Gao,Sentao Chen,Yuxin Zhang,Hui Cui,Ping Xuan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (1): 435-445
标识
DOI:10.1021/acs.jcim.4c01544
摘要

The human microbiota may influence the effectiveness of drug therapy by activating or inactivating the pharmacological properties of drugs. Computational methods have demonstrated their ability to screen reliable microbe-drug associations and uncover the mechanism by which drugs exert their functions. However, the previous prediction methods failed to completely exploit the neighborhood topologies of the microbe and drug entities and the diverse correlations between the microbe-drug entity pair and the other entities. In addition, they ignored the case that a microbe prefers to associate with its own specific drugs. A novel prediction method, PCMDA, was proposed by learning the neighborhood topologies of entities, inferring the association preferences, and integrating the features of each entity pair based on multiple biological premises. First, a knowledge graph consisting of microbe, disease, and drug entities is established to help the subsequent integration of the topological structure of entities and the similarity, interaction, and association relationship between any two entities. We generate various topological embeddings for each microbe (or drug) entity through random walks with neighborhood restarts on the microbe-disease-drug knowledge graph. Distance-level attention is designed to adaptively fuse neighborhood topologies covering multiple ranges. Second, the topological embeddings of entities imply the latent topological relationships between entities, while the relational embeddings of entities are derived from the semantics of connections among the entities. The topological structure and relational semantics of entities are fused by a designed knowledge graph learning module based on multilayer perceptron networks. Third, considering the preference that each microbe tends to especially associate with a group of drugs, information-level attention is designed to integrate the dependency between microbial preference and the candidate drug. Finally, a dual-gated network is established to encode the features of a microbe-drug entity pair from multiple biological perspectives. The comparative experiments with seven state-of-the-art methods demonstrate PCMDA's superior performance for microbe-drug association prediction. The case studies on three drugs and the recall rate evaluation for the top-ranked candidates indicate that PCMDA has the capability of discovering reliable candidate microbes associated with a drug. The datasets and source codes are freely available at https://github.com/pingxuan-hlju/pcmda.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助乐观小之采纳,获得10
刚刚
1秒前
科研通AI5应助无心的寄柔采纳,获得10
3秒前
shuiyu发布了新的文献求助10
3秒前
5秒前
Noel应助萨尔莫斯采纳,获得10
5秒前
乔心发布了新的文献求助10
6秒前
6秒前
8秒前
桐桐应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得30
9秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
阿浮完成签到,获得积分10
10秒前
hahaha完成签到,获得积分10
10秒前
11秒前
卓Celina完成签到,获得积分10
11秒前
驿寄梅花发布了新的文献求助10
12秒前
阿浮发布了新的文献求助10
13秒前
天天快乐应助CYY采纳,获得10
16秒前
念辞发布了新的文献求助10
16秒前
HEIKU应助Misea采纳,获得10
18秒前
任性雪糕完成签到 ,获得积分10
18秒前
852应助萨尔莫斯采纳,获得10
19秒前
共享精神应助狡猾肥鲶鱼采纳,获得30
19秒前
情怀应助净净子采纳,获得10
21秒前
魏你大爷完成签到 ,获得积分10
22秒前
丁丁完成签到,获得积分10
22秒前
在水一方应助平淡紫夏采纳,获得10
22秒前
我是老大应助驿寄梅花采纳,获得10
24秒前
缓慢的灵枫完成签到,获得积分10
28秒前
31秒前
驿寄梅花完成签到,获得积分10
36秒前
37秒前
38秒前
38秒前
柠檬精翠翠完成签到 ,获得积分10
41秒前
段段发布了新的文献求助10
43秒前
yuaaaann发布了新的文献求助10
44秒前
CYY发布了新的文献求助10
44秒前
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780337
求助须知:如何正确求助?哪些是违规求助? 3325661
关于积分的说明 10223791
捐赠科研通 3040806
什么是DOI,文献DOI怎么找? 1669006
邀请新用户注册赠送积分活动 798963
科研通“疑难数据库(出版商)”最低求助积分说明 758648