已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Computer Vision for Disease Detection — An Overview of How Computer Vision Techniques Can Be Used to Detect Diseases in Medical Images, Such as X‐Rays and MRIs

可解释性 计算机科学 人工智能 机器学习 深度学习 卷积神经网络 预处理器 医学影像学 数据驱动
作者
Ravindra Sharma,Narendra Kumar,Vinod Sharma
标识
DOI:10.1002/9781394278695.ch4
摘要

The utility of computer imaginative and predictive strategies to medical imaging for disease detection represents a big advancement in healthcare diagnostics. This explores a complete methodology that integrates progressive approaches in deep learning, data augmentation, explainable artificial intelligence (AI), real-time processing, and multimodal records fusion. The primary goal is to enhance the accuracy, efficiency, and transparency of diagnostic strategies throughout various clinical situations consisting of Alzheimer's disease, cardiovascular disorders, and pores and skin conditions. The approach begins with the compilation and preprocessing of diverse scientific datasets, including X-rays, MRIs, CT scans, ECGs, and fundus images. This phase involves close collaboration with medical experts for accurate annotation and the application of advanced preprocessing techniques to ensure high-quality input data. In the final phase, a hybrid deep learning architecture is employed, combining Convolutional Neural Networks (CNNs) for spatial feature extraction and transformers for better capturing long-range dependencies and enhancing the model's predictive performance.This architecture is in addition reinforced through transfer getting to know, leveraging pre-educated models and best-tuning them on precise medical datasets to enhance performance. Information augmentation strategies and generative hostile networks (GANs) are applied to mitigate records scarcity by creating synthetic scientific pictures, thereby enhancing the version's robustness. The education section consists of both supervised and semi-supervised studying strategies, with cross-validation to make certain model generalizability. Explainable AI strategies, consisting of Grad-CAM, are included to offer visible insights into the model's decision-making process, fostering consider and interpretability. Actual-time processing talents are finished through model optimization techniques like pruning and quantization, and deployment on aspect devices to ensure on the spot diagnostic comments. Seamless integration with clinical workflows is prioritized, with the improvement of consumer-friendly interfaces and dashboards that gift diagnostic effects and recommendations comprehensively. A key innovation is the multimodal data integration, combining clinical pictures with EHRs and genetic data. This holistic technique permits for a more comprehensive evaluation and personalized diagnostic insights. Continuous learning frameworks also are carried out, enabling the models to conform and improve with new information and feedback, ensuring they remain current with today's clinical advancements. The results demonstrate extensive enhancements in diagnostic accuracy and performance, with real-time systems imparting instant and dependable comments. The mixing of explainable AI strategies guarantees transparency and fosters greater acceptance amongst healthcare experts. The future scope of this studies consists of further enhancements in multimodal data integration, using federated learning to ensure records privacy, and the incorporation of augmented and virtual reality for interactive diagnostics. Continuous development and real-world validation via clinical trials might be essential in solidifying the role of AI-pushed diagnostics in healthcare. Thus, this looks at providing a robust and innovative framework for disease detection the use of computer imaginative and predictive, highlighting its potential to transform healthcare diagnostics by means of supplying precise, green, and transparent solutions. As the sphere progresses, those AI-driven equipment are poised to come to be integral in clinical exercise, riding ahead the competencies of precision remedy and personalized care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
禁止伤心小羊完成签到,获得积分10
1秒前
xiaozheng完成签到,获得积分10
1秒前
陈西完成签到,获得积分10
2秒前
务实棒球发布了新的文献求助100
3秒前
3秒前
5秒前
香蕉觅云应助文静的翠彤采纳,获得10
6秒前
Gaofangyu发布了新的文献求助10
8秒前
ang完成签到,获得积分10
10秒前
不喜发布了新的文献求助10
11秒前
12秒前
Alpineref应助zkk采纳,获得10
12秒前
酷波er应助little2000采纳,获得30
13秒前
luyuhao3完成签到,获得积分10
17秒前
高山流水发布了新的文献求助10
18秒前
hh完成签到,获得积分10
18秒前
19秒前
Hello应助Elma采纳,获得30
20秒前
22秒前
7788完成签到,获得积分10
22秒前
佟蓝血发布了新的文献求助10
23秒前
科研通AI2S应助hehe采纳,获得10
24秒前
25秒前
炜哥发布了新的文献求助10
27秒前
27秒前
olivia完成签到,获得积分10
29秒前
30秒前
剑指东方是为谁应助haizz采纳,获得10
30秒前
搜集达人应助詹卫卫采纳,获得10
30秒前
虚拟初之完成签到,获得积分10
30秒前
外向青筠完成签到 ,获得积分10
30秒前
AHMZI发布了新的文献求助10
31秒前
bzc229发布了新的文献求助10
32秒前
33秒前
BruceKKKK完成签到,获得积分10
38秒前
Elma发布了新的文献求助30
38秒前
彭于晏应助稳重向南采纳,获得10
39秒前
40秒前
炜哥完成签到,获得积分10
40秒前
学科共进完成签到,获得积分20
41秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906568
求助须知:如何正确求助?哪些是违规求助? 3452276
关于积分的说明 10869237
捐赠科研通 3177847
什么是DOI,文献DOI怎么找? 1755635
邀请新用户注册赠送积分活动 848934
科研通“疑难数据库(出版商)”最低求助积分说明 791330