Multi-scale convolutional network with channel attention mechanism for rolling bearing fault diagnosis

机制(生物学) 方位(导航) 断层(地质) 频道(广播) 比例(比率) 计算机科学 人工智能 地质学 计算机网络 地震学 地图学 物理 地理 量子力学
作者
Yajing Huang,Aihua Liao,Dingyu Hu,Wei Shi,Shubin Zheng
出处
期刊:Measurement [Elsevier BV]
卷期号:203: 111935-111935 被引量:94
标识
DOI:10.1016/j.measurement.2022.111935
摘要

• A new CNN-based model enhancement method for bearing fault diagnosis: CA-MCNN. • A new multi-scale extraction method based on pooling layers. • Adaptive parallel feature fusion mechanism based on 1-D convolution. In recent years, deep learning has achieved great success in bearing fault diagnosis due to its robust feature learning capabilities. However, in the actual industry, the diagnostic accuracy would be degraded under varying operation conditions or in noisy environments. To enhance the diagnostic performance in industrial applications, a Multi-scale Convolutional Neural Network with Channel Attention (CA-MCNN) is proposed in this paper. In CA-MCNN, the maximum pooling and average pooling layers are used to extract the multi-scale information of the bearing signals, which increases the dimensions of input. The channel attention mechanism is introduced to increase the convolutional layer feature learning ability by adaptively scoring and assigning weights to the learned features. Moreover, the feature parallel fusion mechanism based on 1-D convolution is applied to capture complementary multi-scale information and reduce network complexity. The performance of CA-MCNN is compared with other fault diagnosis models, and experimental results verify that the CA-MCNN achieves the highest diagnosis accuracy under noisy environments and varying working speeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sys549发布了新的文献求助10
刚刚
清图发布了新的文献求助10
刚刚
泡泡完成签到 ,获得积分10
刚刚
科研通AI5应助光亮靖琪采纳,获得10
刚刚
ac完成签到,获得积分10
刚刚
1秒前
施宛儿完成签到 ,获得积分10
1秒前
cmx发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
Billy应助zhou采纳,获得30
3秒前
3秒前
11223344完成签到,获得积分20
3秒前
5秒前
豆豆发布了新的文献求助10
5秒前
tianyulu完成签到,获得积分10
6秒前
JustinLiu完成签到,获得积分10
6秒前
FashionBoy应助Ubuntu采纳,获得10
6秒前
汉堡包应助JJ采纳,获得10
6秒前
科研通AI5应助Gang采纳,获得10
7秒前
7秒前
chenchen发布了新的文献求助10
7秒前
7秒前
告白气球发布了新的文献求助10
7秒前
研友_ZbbaRZ完成签到,获得积分10
8秒前
清梦完成签到,获得积分10
8秒前
温柔的惜儿应助桂桂阿云采纳,获得30
8秒前
懒羊羊完成签到,获得积分10
8秒前
8秒前
今后应助Condor采纳,获得10
9秒前
上官若男应助kkkkkoi采纳,获得10
9秒前
Hello应助yuan采纳,获得10
9秒前
Lucas应助还单身的惜文采纳,获得10
10秒前
Orange应助开开采纳,获得10
11秒前
爆米花应助flysky120采纳,获得10
11秒前
11秒前
11秒前
英俊的铭应助JustinLiu采纳,获得10
12秒前
Xie完成签到,获得积分10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Semiconductor Wafer Bonding: Science Technology, and Applications VI 200
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835735
求助须知:如何正确求助?哪些是违规求助? 3378088
关于积分的说明 10502218
捐赠科研通 3097678
什么是DOI,文献DOI怎么找? 1705955
邀请新用户注册赠送积分活动 820760
科研通“疑难数据库(出版商)”最低求助积分说明 772274