路径集成
网格单元
海马结构
感觉系统
神经科学
放置单元格
图层(电子)
网格
计算机科学
海马体
路径(计算)
人工智能
生物
化学
几何学
数学
有机化学
程序设计语言
作者
Azra Aziz,Peesapati S. S. Sreeharsha,Rohan Natesh,V. Srinivasa Chakravarthy
出处
期刊:Hippocampus
[Wiley]
日期:2022-08-10
卷期号:32 (10): 716-730
被引量:7
摘要
Abstract A special class of neurons in the hippocampal formation broadly known as the spatial cells, whose subcategories include place cells, grid cells, and head direction cells, are considered to be the building blocks of the brain's map of the spatial world. We present a general, deep learning‐based modeling framework that describes the emergence of the spatial‐cell responses and can also explain responses that involve a combination of path integration and vision. The first layer of the model consists of head direction (HD) cells that code for the preferred direction of the agent. The second layer is the path integration (PI) layer with oscillatory neurons: displacement of the agent in a given direction modulates the frequency of these oscillators. Principal component analysis (PCA) of the PI‐cell responses showed the emergence of cells with grid‐like spatial periodicity. We show that the Bessel functions could describe the response of these cells. The output of the PI layer is used to train a stack of autoencoders. Neurons of both the layers exhibit responses resembling grid cells and place cells. The paper concludes by suggesting the wider applicability of the proposed modeling framework beyond the two simulated studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI