Tourists’ post-adoption continuance intentions of chatbots: integrating task–technology fit model and expectation–confirmation theory

聊天机器人 连续性 任务(项目管理) 背景(考古学) 独创性 服务(商务) 结构方程建模 计算机科学 营销 构造(python库) 知识管理 心理学 业务 社会心理学 人工智能 经济 管理 程序设计语言 古生物学 机器学习 生物 创造力
作者
Neeraj Dhiman,Mohit Jamwal
出处
期刊:Foresight [Emerald Publishing Limited]
卷期号:25 (2): 209-224 被引量:40
标识
DOI:10.1108/fs-10-2021-0207
摘要

Purpose Despite the proliferation of service chatbots in the tourism industry, the question on its continuance intentions among customers has largely remain unanswered. Building on an integrated framework using the task–technology fit theory (TTF) and the expectation–confirmation model (ECM), the present study aims to settle this debate by investigating the factors triggering customers to continue to use chatbots in a travel planning context. Design/methodology/approach The research followed a quantitative approach in which a survey of 322 chatbot users was undertaken. The model was empirically validated using the structural equation modelling approach using AMOS. Findings The results reveal that users’ expectations are confirmed when they believe that the technological characteristics of chatbots satisfy their task-related characteristics. Simply, the results reveal a significant and direct effect of TTF on customers’ confirmation and perceived usefulness towards chatbots. Moreover, perceived usefulness and confirmation were found to positively impact customers’ satisfaction towards chatbots, in which the former exerts a relatively stronger impact. Not surprisingly, customers’ satisfaction with the artificial intelligence(AI)-based chatbots emerged as a predominant predictor of their continuance use. Practical implications The findings have various practical ramifications for developers who must train chatbot algorithms on massive data to increase their accuracy and to answer more exhaustive inquiries, thereby generating a task–technology fit. It is recommended that service providers give consumers hassle-free service and precise answers to their inquiries to guarantee their satisfaction. Originality/value The present work attempted to empirically construct and evaluate the combination of the TTF model and the ECM, which is unique in the AI-based chatbots available in a tourism context. This research presents an alternate method for understanding the continuance intentions concerning AI-based service chatbots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孟孟完成签到 ,获得积分10
3秒前
hypo关注了科研通微信公众号
3秒前
Ruyii完成签到,获得积分10
6秒前
7秒前
好好睡觉完成签到,获得积分10
7秒前
科目三应助yy123采纳,获得10
8秒前
香蕉觅云应助Du采纳,获得30
8秒前
tramp应助文静的猕猴桃采纳,获得20
12秒前
kd完成签到,获得积分10
13秒前
畅快代柔发布了新的文献求助10
13秒前
学医的小胖子完成签到 ,获得积分10
14秒前
康康发布了新的文献求助10
15秒前
niekyang发布了新的文献求助10
19秒前
黑苹果完成签到,获得积分10
20秒前
CYD完成签到 ,获得积分10
21秒前
碳酸氢钠完成签到,获得积分10
22秒前
26秒前
27秒前
大个应助wdou采纳,获得10
27秒前
ferritin发布了新的文献求助10
31秒前
拉长的哈密瓜关注了科研通微信公众号
33秒前
33秒前
36秒前
37秒前
所所应助葫芦采纳,获得10
38秒前
Wind应助淡淡的向雁采纳,获得10
38秒前
39秒前
kingwill发布了新的文献求助10
39秒前
39秒前
波鲁鲁爱喝酸奶应助Guan采纳,获得10
43秒前
jiashan发布了新的文献求助10
43秒前
小跳蚤发布了新的文献求助10
43秒前
奋斗雁山完成签到,获得积分10
44秒前
Alienation发布了新的文献求助10
46秒前
46秒前
拜拜了您嘞完成签到,获得积分10
48秒前
脑洞疼应助刻苦的悟空采纳,获得10
49秒前
酥瓜完成签到 ,获得积分10
49秒前
专一的谷南完成签到,获得积分20
51秒前
52秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4084408
求助须知:如何正确求助?哪些是违规求助? 3623612
关于积分的说明 11494743
捐赠科研通 3337955
什么是DOI,文献DOI怎么找? 1835118
邀请新用户注册赠送积分活动 903690
科研通“疑难数据库(出版商)”最低求助积分说明 821848