数学
超临界流体
有界函数
领域(数学分析)
欧米茄
Dirichlet边界条件
边界(拓扑)
Dirichlet分布
组合数学
临界点(数学)
功能(生物学)
数学分析
数学物理
边值问题
物理
热力学
量子力学
进化生物学
生物
作者
Riccardo Molle,Angela Pistoia
标识
DOI:10.57262/ade/1355926840
摘要
This paper deals with the existence of positive solutions of problem $-\Delta u=u^{N+2\over N-2}+{\varepsilon} w(x)u^q $, with Dirichlet zero boundary condition on $\Omega$ (a bounded domain in $\mathbb R^N$), when $q\geq 1$ and $q\neq{N+2\over N-2}$. We study the existence of solutions which blow-up and concentrate at a single point of $\Omega$ whose location depends on the Robin function and on the coefficient $w$ of the perturbed term.
科研通智能强力驱动
Strongly Powered by AbleSci AI