希尔伯特-黄变换
批处理
噪音(视频)
鉴定(生物学)
过程(计算)
模式(计算机接口)
计算机科学
信号(编程语言)
分解
稳态(化学)
人工智能
白噪声
电信
生态学
化学
植物
物理化学
图像(数学)
生物
程序设计语言
操作系统
作者
Bor-Luen Huang,Yuan Yao
出处
期刊:Computer-aided chemical engineering
日期:2014-01-01
卷期号:: 787-792
被引量:1
标识
DOI:10.1016/b978-0-444-63456-6.50132-0
摘要
In batch processes, online steady state identification (SSID) is important for ensuring the quality consistence of final products. This paperpresents a robust method for batch process SSID by the use of ensemble empirical mode decomposition (EEMD) and statistical test. First, EEMD and moving-window technique areadoptedto decompose batch process signalsinto multiple intrinsic mode function (IMF) components in real time. Then, by computingthe instantaneous frequencies of each IMFthroughthe generalized zero-crossing (GZC) method, the IMFs are divided into three levels corresponding to high-frequency noise, intra-batch variation, and inter-batch trend, respectively. By utilizing the inter-batch trend instead of the original signal in SSID, the identification results are robustto measurement noise and process disturbance. Injection molding, a typical batch process, is usedto demonstratethe proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI