The Effect of Environmental Features, Self-Avatar, and Immersion on Object Location Memory in Virtual Environments

阿凡达 人机交互 虚拟现实 计算机科学 沉浸式(数学) 虚拟机 召回 学习效果 学习对象 多媒体 对象(语法) 忠诚 人工智能 心理学 认知心理学 微观经济学 经济 纯数学 操作系统 电信 数学
作者
María Murcia-López,Anthony Steed
出处
期刊:Frontiers in ICT [Frontiers Media]
卷期号:3 被引量:34
标识
DOI:10.3389/fict.2016.00024
摘要

One potential application for virtual environments (VEs) is the training of spatial knowledge. A critical question is what features the VE should have in order to facilitate this training. Previous research has shown that people rely on environmental features, such as sockets and wall decorations, when learning object locations. The aim of this study is to explore the effect of varied environmental feature fidelity of VEs, the use of self-avatars and the level of immersion on object location learning and recall. Following a between-subjects experimental design, participants were asked to learn the location of three identical objects by navigating one of three environments: a physical laboratory, or low and high detail VE replicas of this laboratory. Participants who experienced the VEs could use either a head-mounted display (HMD) or a desktop computer. Half of the participants learning in the HMD and desktop systems were assigned a virtual body. Participants were then asked to place physical versions of the three objects in the physical laboratory in the same configuration. We tracked participant movement, measured object placement, and administered a questionnaire related to aspects of the experience. HMD learning resulted in statistically significant higher performance than desktop learning. Results indicate that, when learning in low detail VEs, there is no difference in performance between participants using HMD and desktop systems. Overall, providing the participant with a virtual body had a negative impact on performance. Preliminary inspection of navigation data indicates that spatial learning strategies are different in systems with varying levels of immersion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼呼呼完成签到 ,获得积分10
1秒前
板栗子发布了新的文献求助10
2秒前
Akim应助年轻的藏今采纳,获得10
2秒前
bkagyin应助try采纳,获得50
3秒前
Ava应助LYHUIII采纳,获得10
4秒前
无花果应助一见憘采纳,获得10
4秒前
受伤元灵关注了科研通微信公众号
6秒前
Yuna完成签到,获得积分10
7秒前
7秒前
8秒前
10秒前
12秒前
13秒前
伊斯塔发布了新的文献求助10
15秒前
ENIGMA__K发布了新的文献求助30
16秒前
受伤元灵发布了新的文献求助10
16秒前
王111完成签到,获得积分10
19秒前
Orange应助lsx采纳,获得10
20秒前
cdercder应助甜美宛儿采纳,获得10
21秒前
21秒前
赫赫完成签到,获得积分10
23秒前
许甜甜鸭应助cis2014采纳,获得10
24秒前
研友_LjDyNZ发布了新的文献求助20
25秒前
25秒前
研友_VZG7GZ应助伊斯塔采纳,获得10
25秒前
25秒前
小白发布了新的文献求助10
30秒前
tianqing发布了新的文献求助10
30秒前
英姑应助Iso采纳,获得10
31秒前
ant完成签到,获得积分10
32秒前
FashionBoy应助悠然采纳,获得10
32秒前
新新新新新发顶刊完成签到 ,获得积分10
32秒前
32秒前
Wangz发布了新的文献求助10
33秒前
伊斯塔完成签到,获得积分10
34秒前
科研狗完成签到 ,获得积分10
35秒前
虞丹萱发布了新的文献求助10
36秒前
甜美宛儿完成签到,获得积分10
36秒前
37秒前
情怀应助科研通管家采纳,获得10
37秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Maturation of NMDA receptor-mediated spontaneous postsynaptic currents in the rat locus coeruleus neurons 200
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834973
求助须知:如何正确求助?哪些是违规求助? 3377482
关于积分的说明 10498771
捐赠科研通 3096967
什么是DOI,文献DOI怎么找? 1705366
邀请新用户注册赠送积分活动 820529
科研通“疑难数据库(出版商)”最低求助积分说明 772123