Mental representation and the discovery of new strategies

情感(语言学) 代表(政治) 心理表征 质量(理念) 对偶(语法数字) 平衡(能力) 计算机科学 心理导图 脑力劳动 心理学 认知心理学 认知 政治 政治学 神经科学 法学 艺术 哲学 文学类 认识论 沟通
作者
Felipe A. Csaszar,Daniel A. Levinthal
出处
期刊:Strategic Management Journal [Wiley]
卷期号:37 (10): 2031-2049 被引量:174
标识
DOI:10.1002/smj.2440
摘要

Research summary : Managers' mental representations affect the perceived payoffs and alternatives that managers consider. Thus, mental representations affect how managers search for profitable strategies as well as the quality of strategies they discover. To study how mental representation and search interact, we formally model the dual search over possible representations and over policy choices of a strategy “landscape.” We analyze when it is preferable to emphasize searching for the best policies rather than the best mental representation, and vice versa. We show that, in the long run, a balance between the two search modes not only results in better expected performance, but also reduces the variation in performance. Additionally, the article describes conditions under which increased accuracy of mental representations can actually worsen firm performance . Managerial summary : Managers' mental representations affect the perceived payoffs and alternatives that managers consider. Thus, mental representations affect the quality of strategies managers can discover. We analyze a computer simulation of how managers use mental representations to search for strategies. This sheds light on how managers should deal with the trade‐off between searching for policies and searching for representations; that is, whether managers should think creatively about how to represent a strategy problem or whether they should just stick to the current problem understanding, and try to find ways to improve performance as suggested by the current representation. We provide insight regarding the balance between the two search modes and describe conditions under which increasingly accurate mental representations can worsen firm performance . Copyright © 2015 John Wiley & Sons, Ltd.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
loski完成签到,获得积分10
1秒前
joasuka完成签到,获得积分20
2秒前
义气迎彤应助阿恺采纳,获得10
2秒前
4秒前
4秒前
5秒前
suxin完成签到 ,获得积分10
6秒前
孙哈哈完成签到 ,获得积分10
6秒前
孙彩瑛完成签到,获得积分10
7秒前
8秒前
Morpheus完成签到,获得积分10
8秒前
Yy杨优秀发布了新的文献求助10
10秒前
邓娇叶发布了新的文献求助10
10秒前
华仔应助林钰浩采纳,获得10
10秒前
做猪要开心完成签到,获得积分10
10秒前
13秒前
啦啦啦啦完成签到,获得积分10
14秒前
戴医生关注了科研通微信公众号
15秒前
bkagyin应助仙人采纳,获得30
16秒前
爆米花应助Yy杨优秀采纳,获得10
17秒前
17秒前
18秒前
桐桐应助邓娇叶采纳,获得10
19秒前
阳光路上发布了新的文献求助10
21秒前
林钰浩发布了新的文献求助10
23秒前
科研通AI5应助如梦如画采纳,获得10
25秒前
SS关闭了SS文献求助
26秒前
30秒前
所所应助李多多采纳,获得10
33秒前
大雄完成签到,获得积分10
35秒前
笨笨念文完成签到 ,获得积分10
35秒前
小白发布了新的文献求助10
37秒前
pray完成签到,获得积分10
41秒前
qiao应助Loik采纳,获得10
41秒前
Tacamily完成签到,获得积分10
45秒前
46秒前
younger完成签到,获得积分10
47秒前
shoo完成签到,获得积分10
49秒前
super chan发布了新的文献求助10
49秒前
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Gray Matters: A Biography of Brain Surgery 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782433
求助须知:如何正确求助?哪些是违规求助? 3327874
关于积分的说明 10233601
捐赠科研通 3042859
什么是DOI,文献DOI怎么找? 1670242
邀请新用户注册赠送积分活动 799658
科研通“疑难数据库(出版商)”最低求助积分说明 758884