拉普拉斯压力
润湿
气泡
材料科学
纳米技术
表面张力
静水压力
固体表面
制作
粘附
接触角
纳米光刻
气泡
复合材料
机械
化学物理
化学
热力学
物理
病理
替代医学
医学
作者
Jijo Easo George,Santhosh Chidangil,Sajan D. George
标识
DOI:10.1002/admi.201601088
摘要
In spite of large amount of research in fabricating surfaces of varying wettability by biomimicking the naturally occurring surfaces, the work on fundamentally and industrially important air bubble adhesion on solid surfaces and its applications are still in the burgeoning stage. The present progress report provides a discussion and a critical evaluation of the recent literature available on the fabrication of superaerophilic/superaerophobic surfaces via synergic modification of surface topography and surface chemistry. An abridge on the physics behind bubble wetting on a solid in a liquid medium is deciphered here, considering the interfacial surface tension balance at the three‐phase contact line, Laplace pressure, hydrostatic pressure, and surface forces, respectively. Emphasis is made on the advancement in micro/nanofabrication technologies to fabricate surfaces that break the conventional wisdom of complementary behavior of water and air bubble contact angles. The progress report presented here also shines light on the mechanism of air bubble dynamics on solid surfaces and the latest developments in achieving surfaces of varied air bubble adhesion and its applications. Finally, the prospects of the superaerophobic and superaerophilic surfaces in the near future together with the challenges faced in accomplishing them are also insinuated.
科研通智能强力驱动
Strongly Powered by AbleSci AI