锂(药物)
从头算
可解释性
氧化还原
化学
分子轨道
计算化学
原子轨道
离子
分子
电解质
化学物理
物理化学
无机化学
机器学习
物理
计算机科学
量子力学
有机化学
电子
心理学
精神科
电极
作者
Yasuharu Okamoto,Yoshimi Kubo
出处
期刊:ACS omega
[American Chemical Society]
日期:2018-07-13
卷期号:3 (7): 7868-7874
被引量:56
标识
DOI:10.1021/acsomega.8b00576
摘要
Ab initio molecular orbital calculations were carried out to examine the redox potentials of 149 electrolyte additives for lithium-ion batteries. These potentials were employed to construct regression models using a machine learning approach. We chose simple descriptors based on the chemical structure of the additive molecules. The descriptors predicted the redox potentials well, in particular, the oxidation potentials. We found that the redox potentials can be explained by a small number of features, which improve the interpretability of the results and seem to be related to the amplitude of the eigenstate of the frontier orbitals.
科研通智能强力驱动
Strongly Powered by AbleSci AI