Disease progression and treatment response in data-driven subgroups of type 2 diabetes compared with models based on simple clinical features: an analysis using clinical trial data

医学 2型糖尿病 糖尿病 临床试验 内科学 简单(哲学) 梅德林 疾病 内分泌学 政治学 认识论 哲学 法学
作者
John Dennis,Beverley M. Shields,William Henley,Angus G. Jones,Andrew T. Hattersley
出处
期刊:The Lancet Diabetes & Endocrinology [Elsevier BV]
卷期号:7 (6): 442-451 被引量:394
标识
DOI:10.1016/s2213-8587(19)30087-7
摘要

BackgroundResearch using data-driven cluster analysis has proposed five subgroups of diabetes with differences in diabetes progression and risk of complications. We aimed to compare the clinical utility of this subgroup-based approach for predicting patient outcomes with an alternative strategy of developing models for each outcome using simple patient characteristics.MethodsWe identified five clusters in the ADOPT trial (n=4351) using the same data-driven cluster analysis as reported by Ahlqvist and colleagues. Differences between clusters in glycaemic and renal progression were investigated and contrasted with stratification using simple continuous clinical features (age at diagnosis for glycaemic progression and baseline renal function for renal progression). We compared the effectiveness of a strategy of selecting glucose-lowering therapy using clusters with one combining simple clinical features (sex, BMI, age at diagnosis, baseline HbA1c) in an independent trial cohort (RECORD [n=4447]).FindingsClusters identified in trial data were similar to those described in the original study by Ahlqvist and colleagues. Clusters showed differences in glycaemic progression, but a model using age at diagnosis alone explained a similar amount of variation in progression. We found differences in incidence of chronic kidney disease between clusters; however, estimated glomerular filtration rate at baseline was a better predictor of time to chronic kidney disease. Clusters differed in glycaemic response, with a particular benefit for thiazolidinediones in patients in the severe insulin-resistant diabetes cluster and for sulfonylureas in patients in the mild age-related diabetes cluster. However, simple clinical features outperformed clusters to select therapy for individual patients.InterpretationThe proposed data-driven clusters differ in diabetes progression and treatment response, but models that are based on simple continuous clinical features are more useful to stratify patients. This finding suggests that precision medicine in type 2 diabetes is likely to have most clinical utility if it is based on an approach of using specific phenotypic measures to predict specific outcomes, rather than assigning patients to subgroups.FundingUK Medical Research Council.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
謓言完成签到 ,获得积分10
1秒前
1秒前
陆人甲完成签到,获得积分10
2秒前
zzj完成签到,获得积分10
2秒前
结实的忆之完成签到,获得积分10
3秒前
wsy1029给wsy1029的求助进行了留言
4秒前
隐形曼青应助美丽梦秋采纳,获得20
5秒前
Orange应助韩明佐采纳,获得10
5秒前
5秒前
6秒前
6秒前
缓慢的靖琪完成签到,获得积分10
7秒前
踏实采波完成签到,获得积分10
7秒前
伊绵好完成签到,获得积分10
8秒前
10秒前
10秒前
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
小明应助科研通管家采纳,获得20
10秒前
Ava应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
李健应助科研通管家采纳,获得10
11秒前
11秒前
李健应助科研通管家采纳,获得10
11秒前
11秒前
泡泡完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
脑洞疼应助sunset采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321239
求助须知:如何正确求助?哪些是违规求助? 4463064
关于积分的说明 13888665
捐赠科研通 4354148
什么是DOI,文献DOI怎么找? 2391585
邀请新用户注册赠送积分活动 1385183
关于科研通互助平台的介绍 1354924