Fully Convolutional Networks for Multisource Building Extraction From an Open Aerial and Satellite Imagery Data Set

计算机科学 数据集 卷积神经网络 人工智能 集合(抽象数据类型) 遥感 一般化 航空影像 分割 光栅图形 深度学习 卫星图像 数据挖掘 模式识别(心理学) 图像(数学) 地理 数学 数学分析 程序设计语言
作者
Shunping Ji,Shiqing Wei,Meng Lü
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (1): 574-586 被引量:1538
标识
DOI:10.1109/tgrs.2018.2858817
摘要

The application of the convolutional neural network has shown to greatly improve the accuracy of building extraction from remote sensing imagery. In this paper, we created and made open a high-quality multisource data set for building detection, evaluated the accuracy obtained in most recent studies on the data set, demonstrated the use of our data set, and proposed a Siamese fully convolutional network model that obtained better segmentation accuracy. The building data set that we created contains not only aerial images but also satellite images covering 1000 km 2 with both raster labels and vector maps. The accuracy of applying the same methodology to our aerial data set outperformed several other open building data sets. On the aerial data set, we gave a thorough evaluation and comparison of most recent deep learning-based methods, and proposed a Siamese U-Net with shared weights in two branches, and original images and their down-sampled counterparts as inputs, which significantly improves the segmentation accuracy, especially for large buildings. For multisource building extraction, the generalization ability is further evaluated and extended by applying a radiometric augmentation strategy to transfer pretrained models on the aerial data set to the satellite data set. The designed experiments indicate our data set is accurate and can serve multiple purposes including building instance segmentation and change detection; our result shows the Siamese U-Net outperforms current building extraction methods and could provide valuable reference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc完成签到,获得积分10
1秒前
1秒前
852应助lql采纳,获得10
1秒前
1秒前
1秒前
2秒前
sss完成签到,获得积分10
2秒前
呆萌的悲发布了新的文献求助10
3秒前
wangjie发布了新的文献求助10
3秒前
Lengbo发布了新的文献求助10
3秒前
文静的巨人完成签到,获得积分20
3秒前
4秒前
anhui完成签到,获得积分10
4秒前
李爱国应助WW采纳,获得10
4秒前
4秒前
5秒前
咩咩咩完成签到,获得积分20
5秒前
自觉冰巧发布了新的文献求助10
6秒前
77kk发布了新的文献求助10
6秒前
曹问旋发布了新的文献求助10
6秒前
桐桐应助小闲采纳,获得10
6秒前
小可爱发布了新的文献求助10
6秒前
7秒前
自由的便当完成签到,获得积分10
7秒前
刻苦惜萍完成签到,获得积分20
8秒前
嘉心糖完成签到,获得积分0
8秒前
sleepingfish应助梦游菌采纳,获得20
8秒前
sherry777发布了新的文献求助30
8秒前
修仙梅发布了新的文献求助10
9秒前
文艺紫菜应助liangchao采纳,获得10
9秒前
kkc发布了新的文献求助10
9秒前
9秒前
浮游应助aaaaa采纳,获得10
10秒前
lbt1686666发布了新的文献求助10
10秒前
迷路的八宝粥完成签到,获得积分10
11秒前
11秒前
12秒前
Lengbo完成签到,获得积分10
12秒前
lcz发布了新的文献求助20
12秒前
三月abc发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123034
求助须知:如何正确求助?哪些是违规求助? 4327617
关于积分的说明 13484959
捐赠科研通 4161732
什么是DOI,文献DOI怎么找? 2281010
邀请新用户注册赠送积分活动 1282501
关于科研通互助平台的介绍 1221550