Poly-Ligand Profiling differentiates pancreatic cancer patients according to treatment benefit from gemcitabine+placebo versus gemcitabine+evofosfamide and identifies candidate targets

吉西他滨 医学 胰腺癌 肿瘤科 癌症 癌症研究 内科学 计算生物学 生物
作者
Valeriy Domenyuk,X. Liu,Daniel Magee,Zoran Gatalica,Adam Stark,Patrick Kennedy,Matthew Rosenow,Anna D. Barker,Donald A. Berry,George Poste,David Halbert,Charles P. Hart,Michael Famulok,Günter Mayer,Michael Korn,Mark Miglarese,David Spetzler
出处
期刊:Annals of Oncology [Elsevier]
卷期号:29: v36-v36 被引量:6
标识
DOI:10.1093/annonc/mdy151.131
摘要

Introduction: The accumulation of a multitude of subtle molecular aberrations during tumor progression limit the efficacy of anti-cancer drugs. A vast array of these variations can be assessed with Poly-Ligand Profiling (PLP), which is utilizing libraries of trillion unique ssDNA with aptamer binding properties. The aims of this study were to develop a PLP library that differentiate pancreatic cancer patients who can benefit from gemcitabine+evofosfamide (GE) or gemcitabine+placebo (G) and identify its molecular targets. Methods: Patients: locally advanced or metastatic pancreatic cancer patients randomized to G vs GE in the unsuccessful phase III MAESTRO trial (Threshold Pharmaceuticals, Merck KgaA). FFPE tissues of patients with good (OS > 13 mos) or poor (OS < 7 mos) outcome from GE were used for PLP library development. Affinity maturation and testing of library for binding FFPE tissue is done with IHC-like protocol. Assay conditions and algorithm were locked based on the training set (n = 12) and used for testing assay performance in the blinded set (n = 172, primary and metastatic sites). PLP-assay performance metrics from blinded test set served to estimate the impact on the MAESTRO study (n = 693) by performing 1000 simulations. For target ID, FFPE tissue of patients with poor outcome, stained with enriched library, was recovered, lysed, underwent affinity-based pull-downs, purified with PAGE gel and subjected to high resolution mass-spectrometry (MS). Results: 1,000 simulations of projected PLP-positive patients from MAESTRO study revealed a median OS increase of 37.6% (mean) in G+E cohort, compared to G (17.4% OS increase in MAESTRO) with mean Hazard Ratio (HR) 0.72 (0.84 in MAESTRO). 96.9% of simulated trials achieved statistical significance. For primary tumor samples the median OS increase for G+E patients was 53.4% with mean HRs of 0.64 with 100% of trials exhibiting log-rank p < 0.05. MS reliably detected 20 proteins, 11 of which have reported associations with pancreatic cancer and 6 have been associated with resistance to gemcitabine: vimentin (VIM), pyruvate kinase (PKM), endoplasmic reticulum chaperone BiP (HSPA5), heat shock protein HSP 90-alpha (HSP90AA1), Histone H3-1 (HIST1H3A), heat shock protein beta-1 (HSPB1). Vimentin is a mesenchymal marker whose expression increases during epithelial–to-mesenchymal transition (EMT) and tumor progression. EMT results in the suppression of human equilibrative/concentrative nucleoside transporter and protects tumor cells from gemcitabine. GRP78 overexpression confers resistance to gemcitabine and its knockdown sensitizes tumor cells to drug treatment. Alternative splicing of PKM promotes gemcitabine resistance in pancreatic cancer cells most likely by boosting glycolysis-fueled proliferation. Heat shock proteins regulate multiple tumor survival and progression pathways and their inhibition attenuates resistance of cancer cells to gemcitabine. Pancreatic tumors demonstrate increased histones acetylation, which was correlating with increased protection against gemcitabine. Further characterization of these candidate targets is ongoing. Conclusion: PLP is a novel platform for classifying pancreatic cancer patients according to their benefiting from GE treatment. MS of the PLP library pull-downs reveals targets associated with gemcitabine resistance. In principle, the novel PLP platform could be applied to different therapeutic regimen for the development of urgently needed companion diagnostic tests in cancer and other diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
知否完成签到 ,获得积分0
1秒前
归尘发布了新的文献求助10
1秒前
CipherSage应助Logan采纳,获得10
1秒前
1秒前
田様应助文静的天蓝采纳,获得10
2秒前
清脆天空发布了新的文献求助10
2秒前
suiyi发布了新的文献求助10
2秒前
3秒前
3秒前
华仔应助Eric采纳,获得10
3秒前
老实巴交发布了新的文献求助10
3秒前
w嘻嘻发布了新的文献求助10
4秒前
4秒前
科研小白完成签到,获得积分10
4秒前
活力顿阿雪完成签到,获得积分10
4秒前
摘星012完成签到 ,获得积分10
4秒前
5秒前
5秒前
beituo完成签到,获得积分10
6秒前
6秒前
real发布了新的文献求助10
6秒前
ngldy发布了新的文献求助10
7秒前
jial完成签到,获得积分10
7秒前
7秒前
L.G.Y完成签到,获得积分10
8秒前
8秒前
我是老大应助博远采纳,获得10
8秒前
1122完成签到,获得积分10
9秒前
Criminology34应助怡然的夏之采纳,获得10
9秒前
乐乐应助起司我算了采纳,获得10
10秒前
10秒前
啦啦啦啦啦完成签到 ,获得积分10
11秒前
轻松月亮完成签到,获得积分10
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
bjglp完成签到,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760503
求助须知:如何正确求助?哪些是违规求助? 5525145
关于积分的说明 15397760
捐赠科研通 4897376
什么是DOI,文献DOI怎么找? 2634169
邀请新用户注册赠送积分活动 1582215
关于科研通互助平台的介绍 1537621