Synergistic substrate cofeeding stimulates reductive metabolism

分解代谢抑制 脂肪生成 代谢途径 生物化学 化学 新陈代谢 醋酸激酶 基质(水族馆) 磷酸戊糖途径 生物 糖酵解 生态学 基因 突变体 大肠杆菌
作者
Junyoung O. Park,Nian Liu,Kara M. Holinski,David Emerson,Kangjian Qiao,Benjamin M. Woolston,Jingyang Xu,Zbigniew Lazar,M. Ahsanul Islam,Charles Vidoudez,Peter R. Girguis,Gregory Stephanopoulos
出处
期刊:Nature metabolism [Nature Portfolio]
卷期号:1 (6): 643-651 被引量:88
标识
DOI:10.1038/s42255-019-0077-0
摘要

Advanced bioproduct synthesis via reductive metabolism requires coordinating carbons, ATP and reducing agents, which are generated with varying efficiencies depending on metabolic pathways. Substrate mixtures with direct access to multiple pathways may optimally satisfy these biosynthetic requirements. However, native regulation favouring preferential use precludes cells from co-metabolizing multiple substrates. Here we explore mixed substrate metabolism and tailor pathway usage to synergistically stimulate carbon reduction. By controlled cofeeding of superior ATP and NADPH generators as 'dopant' substrates to cells primarily using inferior substrates, we circumvent catabolite repression and drive synergy in two divergent organisms. Glucose doping in Moorella thermoacetica stimulates CO2 reduction (2.3 g gCDW−1 h−1) into acetate by augmenting ATP synthesis via pyruvate kinase. Gluconate doping in Yarrowia lipolytica accelerates acetate-driven lipogenesis (0.046 g gCDW−1 h−1) by obligatory NADPH synthesis through the pentose cycle. Together, synergistic cofeeding produces CO2-derived lipids with 38% energy yield and demonstrates the potential to convert CO2 into advanced bioproducts. This work advances the systems-level control of metabolic networks and CO2 use, the most pressing and difficult reduction challenge. Bioproduct synthesis via reductive metabolism occurs with different efficiencies according to the availability of carbons, ATP and reducing agents. To maximize overall product synthesis efficiency, the authors develop a substrate cofeeding strategy, which circumvents catabolite repression and drives synergy in lipid synthesis from CO2 using two microbes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星辰大海应助olivia采纳,获得20
4秒前
4秒前
清水完成签到,获得积分10
5秒前
于芋菊完成签到,获得积分0
6秒前
7秒前
8秒前
楠楠2001发布了新的文献求助10
8秒前
9秒前
wenli完成签到,获得积分10
9秒前
10秒前
olivia完成签到,获得积分10
12秒前
12秒前
子车茗应助英俊的小鸽子采纳,获得30
13秒前
15秒前
孙佳婷发布了新的文献求助10
15秒前
大江大河完成签到,获得积分10
16秒前
ColinWine发布了新的文献求助10
16秒前
友好的寒云完成签到,获得积分10
16秒前
完美世界应助youyou采纳,获得30
18秒前
bkagyin应助苻莞采纳,获得10
21秒前
22秒前
我裂开了应助聪慧的访旋采纳,获得10
24秒前
25秒前
26秒前
27秒前
wangfang0228完成签到 ,获得积分10
27秒前
YY发布了新的文献求助10
27秒前
零度发布了新的文献求助10
28秒前
30秒前
31秒前
31秒前
ding应助笑点低的以亦采纳,获得10
31秒前
孙佳婷完成签到 ,获得积分10
32秒前
32秒前
zmy完成签到,获得积分10
33秒前
34秒前
凉拌土豆芽完成签到,获得积分10
34秒前
zho发布了新的文献求助10
35秒前
酷酷的萝应助lq1024424采纳,获得10
36秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899749
求助须知:如何正确求助?哪些是违规求助? 3444358
关于积分的说明 10834679
捐赠科研通 3169272
什么是DOI,文献DOI怎么找? 1751092
邀请新用户注册赠送积分活动 846457
科研通“疑难数据库(出版商)”最低求助积分说明 789191