Towards Fully Mobile 3D Face, Body, and Environment Capture Using Only Head-worn Cameras

计算机科学 运动捕捉 计算机视觉 人工智能 卷积神经网络 虚拟现实 面子(社会学概念) 姿势 增强现实 参数统计 面部表情 三维重建 阿凡达 移动设备 计算机图形学(图像) 人机交互 运动(物理) 操作系统 社会学 统计 社会科学 数学
作者
Young-Woon Cha,True Price,Zhen Wei,Xinran Lu,Nicholas Rewkowski,Rohan Chabra,Zihe Qin,Hyounghun Kim,Zhaoqi Su,Yebin Liu,Adrian Ilie,Andrei State,Zhenlin Xu,Jan‐Michael Frahm,Henry Fuchs
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 2993-3004 被引量:54
标识
DOI:10.1109/tvcg.2018.2868527
摘要

We propose a new approach for 3D reconstruction of dynamic indoor and outdoor scenes in everyday environments, leveraging only cameras worn by a user. This approach allows 3D reconstruction of experiences at any location and virtual tours from anywhere. The key innovation of the proposed ego-centric reconstruction system is to capture the wearer's body pose and facial expression from near-body views, e.g. cameras on the user's glasses, and to capture the surrounding environment using outward-facing views. The main challenge of the ego-centric reconstruction, however, is the poor coverage of the near-body views - that is, the user's body and face are observed from vantage points that are convenient for wear but inconvenient for capture. To overcome these challenges, we propose a parametric-model-based approach to user motion estimation. This approach utilizes convolutional neural networks (CNNs) for near-view body pose estimation, and we introduce a CNN-based approach for facial expression estimation that combines audio and video. For each time-point during capture, the intermediate model-based reconstructions from these systems are used to re-target a high-fidelity pre-scanned model of the user. We demonstrate that the proposed self-sufficient, head-worn capture system is capable of reconstructing the wearer's movements and their surrounding environment in both indoor and outdoor situations without any additional views. As a proof of concept, we show how the resulting 3D-plus-time reconstruction can be immersively experienced within a virtual reality system (e.g., the HTC Vive). We expect that the size of the proposed egocentric capture-and-reconstruction system will eventually be reduced to fit within future AR glasses, and will be widely useful for immersive 3D telepresence, virtual tours, and general use-anywhere 3D content creation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助KDJ采纳,获得20
1秒前
2秒前
脑洞疼应助HonamC采纳,获得10
3秒前
orannie完成签到 ,获得积分10
3秒前
4秒前
焦焦完成签到,获得积分20
4秒前
SweetyTian完成签到,获得积分10
7秒前
9秒前
10秒前
引风发布了新的文献求助10
10秒前
gu发布了新的文献求助30
11秒前
12秒前
华仔应助hjy采纳,获得10
12秒前
12秒前
小二郎应助Dopamine采纳,获得10
13秒前
传奇3应助Dicy采纳,获得10
13秒前
14秒前
任性的煎蛋完成签到,获得积分10
15秒前
dongqin发布了新的文献求助10
16秒前
整齐荟完成签到,获得积分20
16秒前
啦熊完成签到,获得积分10
16秒前
许win发布了新的文献求助10
17秒前
17秒前
婷婷小笑应助迷失的悠悠采纳,获得10
18秒前
Jzq琪琪完成签到,获得积分10
18秒前
上官若男应助dongqin采纳,获得10
22秒前
HE完成签到,获得积分10
22秒前
22秒前
wanci应助DW采纳,获得10
23秒前
23秒前
23秒前
科研通AI2S应助zai采纳,获得10
24秒前
25秒前
丘比特应助绅度采纳,获得10
26秒前
潇洒发夹发布了新的文献求助10
26秒前
小熊熊发布了新的文献求助10
26秒前
科研通AI2S应助高挑的芷珍采纳,获得10
28秒前
化尾鱼完成签到,获得积分10
28秒前
HonamC发布了新的文献求助10
28秒前
颜枫莹完成签到,获得积分10
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792128
求助须知:如何正确求助?哪些是违规求助? 3336396
关于积分的说明 10280645
捐赠科研通 3053053
什么是DOI,文献DOI怎么找? 1675455
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761382