Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study

可解释性 医学 回顾性队列研究 重症监护室 队列 机器学习 队列研究 急诊医学 人工智能 重症监护医学 内科学 计算机科学
作者
Jili Li,Siru Liu,Yundi Hu,Lingfeng Zhu,Yujia Mao,Jialin Liu
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:24 (8): e38082-e38082 被引量:86
标识
DOI:10.2196/38082
摘要

Heart failure (HF) is a common disease and a major public health problem. HF mortality prediction is critical for developing individualized prevention and treatment plans. However, due to their lack of interpretability, most HF mortality prediction models have not yet reached clinical practice.We aimed to develop an interpretable model to predict the mortality risk for patients with HF in intensive care units (ICUs) and used the SHapley Additive exPlanation (SHAP) method to explain the extreme gradient boosting (XGBoost) model and explore prognostic factors for HF.In this retrospective cohort study, we achieved model development and performance comparison on the eICU Collaborative Research Database (eICU-CRD). We extracted data during the first 24 hours of each ICU admission, and the data set was randomly divided, with 70% used for model training and 30% used for model validation. The prediction performance of the XGBoost model was compared with three other machine learning models by the area under the curve. We used the SHAP method to explain the XGBoost model.A total of 2798 eligible patients with HF were included in the final cohort for this study. The observed in-hospital mortality of patients with HF was 9.97%. Comparatively, the XGBoost model had the highest predictive performance among four models with an area under the curve (AUC) of 0.824 (95% CI 0.7766-0.8708), whereas support vector machine had the poorest generalization ability (AUC=0.701, 95% CI 0.6433-0.7582). The decision curve showed that the net benefit of the XGBoost model surpassed those of other machine learning models at 10%~28% threshold probabilities. The SHAP method reveals the top 20 predictors of HF according to the importance ranking, and the average of the blood urea nitrogen was recognized as the most important predictor variable.The interpretable predictive model helps physicians more accurately predict the mortality risk in ICU patients with HF, and therefore, provides better treatment plans and optimal resource allocation for their patients. In addition, the interpretable framework can increase the transparency of the model and facilitate understanding the reliability of the predictive model for the physicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DARKNESS发布了新的文献求助10
3秒前
4秒前
wangnn完成签到,获得积分10
5秒前
6秒前
大个应助YYX采纳,获得10
6秒前
慕辰完成签到,获得积分10
7秒前
DARKNESS完成签到,获得积分10
7秒前
陈同学完成签到,获得积分10
7秒前
鸽子汤完成签到 ,获得积分10
7秒前
聪慧雪糕发布了新的文献求助10
8秒前
11秒前
何时发布了新的文献求助10
13秒前
飞飞完成签到,获得积分10
13秒前
xt发布了新的文献求助10
14秒前
14秒前
佐zzz完成签到 ,获得积分10
16秒前
wer发布了新的文献求助10
18秒前
18秒前
zho发布了新的文献求助10
19秒前
Cactus应助溪泉采纳,获得10
19秒前
20秒前
完美世界应助牛牛采纳,获得10
21秒前
25秒前
ke发布了新的文献求助30
25秒前
中科路2020发布了新的文献求助10
25秒前
orixero应助科研通管家采纳,获得10
26秒前
Hello应助科研通管家采纳,获得10
26秒前
26秒前
打打应助科研通管家采纳,获得10
26秒前
慕青应助科研通管家采纳,获得10
26秒前
今后应助科研通管家采纳,获得10
26秒前
星辰大海应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
27秒前
JamesPei应助科研通管家采纳,获得10
27秒前
27秒前
领导范儿应助科研通管家采纳,获得100
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
振动分析基础 -- (美)L_米罗维奇著;上海交通大学理论力学教研室译 1000
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3912974
求助须知:如何正确求助?哪些是违规求助? 3458322
关于积分的说明 10899687
捐赠科研通 3184620
什么是DOI,文献DOI怎么找? 1760344
邀请新用户注册赠送积分活动 851501
科研通“疑难数据库(出版商)”最低求助积分说明 792730