Deep learning techniques to classify agricultural crops through UAV imagery: a review

计算机科学 深度学习 卷积神经网络 人工智能 精准农业 机器学习 过程(计算) 农业 上下文图像分类 图像(数学) 生态学 生物 操作系统
作者
Abdelmalek Bouguettaya,Hafed Zarzour,Ahmed Kechida,Amine Mohammed Taberkit
出处
期刊:Neural Computing and Applications [Springer Science+Business Media]
卷期号:34 (12): 9511-9536 被引量:56
标识
DOI:10.1007/s00521-022-07104-9
摘要

During the last few years, Unmanned Aerial Vehicles (UAVs) technologies are widely used to improve agriculture productivity while reducing drudgery, inspection time, and crop management cost. Moreover, they are able to cover large areas in a matter of a few minutes. Due to the impressive technological advancement, UAV-based remote sensing technologies are increasingly used to collect valuable data that could be used to achieve many precision agriculture applications, including crop/plant classification. In order to process these data accurately, we need powerful tools and algorithms such as Deep Learning approaches. Recently, Convolutional Neural Network (CNN) has emerged as a powerful tool for image processing tasks achieving remarkable results making it the state-of-the-art technique for vision applications. In the present study, we reviewed the recent CNN-based methods applied to the UAV-based remote sensing image analysis for crop/plant classification to help researchers and farmers to decide what algorithms they should use accordingly to their studied crops and the used hardware. Fusing different UAV-based data and deep learning approaches have emerged as a powerful tool to classify different crop types accurately. The readers of the present review could acquire the most challenging issues facing researchers to classify different crop types from UAV imagery and their potential solutions to improve the performance of deep learning-based algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南宫书瑶完成签到,获得积分10
2秒前
cc完成签到 ,获得积分10
3秒前
taipingyang完成签到,获得积分10
3秒前
和谐的映梦完成签到,获得积分10
4秒前
鱼鱼鱼鱼鱼完成签到 ,获得积分10
4秒前
4秒前
害怕的听筠完成签到,获得积分10
5秒前
xueerbx完成签到,获得积分10
5秒前
芙瑞完成签到 ,获得积分10
6秒前
理穆辛完成签到 ,获得积分10
6秒前
努力向前看完成签到,获得积分10
7秒前
白桃完成签到 ,获得积分10
7秒前
痴情的博超完成签到 ,获得积分10
9秒前
英勇的半兰完成签到 ,获得积分10
9秒前
阿飞完成签到,获得积分10
10秒前
10秒前
wnll发布了新的文献求助20
10秒前
LLII完成签到,获得积分10
11秒前
wanci应助奋斗迎波采纳,获得10
12秒前
kidd瑞完成签到,获得积分10
12秒前
yin完成签到,获得积分10
14秒前
cdercder应助酷酷的玉米采纳,获得20
15秒前
山东老铁完成签到,获得积分10
15秒前
天马行空完成签到,获得积分10
17秒前
看文献完成签到,获得积分0
17秒前
ALUCK完成签到,获得积分10
17秒前
跳跃完成签到,获得积分10
18秒前
皓轩完成签到 ,获得积分10
18秒前
天堑无涯完成签到,获得积分10
19秒前
奋斗的夜山完成签到 ,获得积分10
20秒前
可耐的寒松完成签到,获得积分10
21秒前
aa完成签到,获得积分10
21秒前
平淡的寄风完成签到,获得积分10
21秒前
谢123完成签到 ,获得积分10
21秒前
Dasha完成签到,获得积分10
21秒前
Clover04完成签到,获得积分10
22秒前
热心冷亦完成签到,获得积分10
23秒前
艾米尼发布了新的文献求助10
24秒前
啊哦完成签到 ,获得积分10
24秒前
长孙归尘完成签到 ,获得积分10
25秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827391
求助须知:如何正确求助?哪些是违规求助? 3369689
关于积分的说明 10456874
捐赠科研通 3089369
什么是DOI,文献DOI怎么找? 1699854
邀请新用户注册赠送积分活动 817534
科研通“疑难数据库(出版商)”最低求助积分说明 770251