亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study

医学 血管内超声 组内相关 狭窄 内科学 心脏病学 冠状动脉疾病 放射科 心肌梗塞
作者
Andrew Lin,Nipun Manral,Priscilla McElhinney,Aditya Killekar,Hidenari Matsumoto,Jacek Kwiecinski,Konrad Pieszko,Aryabod Razipour,Kajetan Grodecki,Caroline Park,Yuka Otaki,Mhairi Doris,Alan C Kwan,Donghee Han,Keiichiro Kuronuma,Guadalupe Flores Tomasino,Evangelos Tzolos,Aakash Shanbhag,Markus Goeller,Mohamed Marwan,Heidi Gransar,Balaji K Tamarappoo,Sebastien Cadet,Stephan Achenbach,Stephen J Nicholls,Dennis T Wong,Daniel S Berman,Marc Dweck,David E Newby,Michelle C Williams,Piotr J Slomka,Damini Dey
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:4 (4): e256-e265
标识
DOI:10.1016/s2589-7500(22)00022-x
摘要

Summary

Background

Atherosclerotic plaque quantification from coronary CT angiography (CCTA) enables accurate assessment of coronary artery disease burden and prognosis. We sought to develop and validate a deep learning system for CCTA-derived measures of plaque volume and stenosis severity.

Methods

This international, multicentre study included nine cohorts of patients undergoing CCTA at 11 sites, who were assigned into training and test sets. Data were retrospectively collected on patients with a wide range of clinical presentations of coronary artery disease who underwent CCTA between Nov 18, 2010, and Jan 25, 2019. A novel deep learning convolutional neural network was trained to segment coronary plaque in 921 patients (5045 lesions). The deep learning network was then applied to an independent test set, which included an external validation cohort of 175 patients (1081 lesions) and 50 patients (84 lesions) assessed by intravascular ultrasound within 1 month of CCTA. We evaluated the prognostic value of deep learning-based plaque measurements for fatal or non-fatal myocardial infarction (our primary outcome) in 1611 patients from the prospective SCOT-HEART trial, assessed as dichotomous variables using multivariable Cox regression analysis, with adjustment for the ASSIGN clinical risk score.

Findings

In the overall test set, there was excellent or good agreement, respectively, between deep learning and expert reader measurements of total plaque volume (intraclass correlation coefficient [ICC] 0·964) and percent diameter stenosis (ICC 0·879; both p<0·0001). When compared with intravascular ultrasound, there was excellent agreement for deep learning total plaque volume (ICC 0·949) and minimal luminal area (ICC 0·904). The mean per-patient deep learning plaque analysis time was 5·65 s (SD 1·87) versus 25·66 min (6·79) taken by experts. Over a median follow-up of 4·7 years (IQR 4·0–5·7), myocardial infarction occurred in 41 (2·5%) of 1611 patients from the SCOT-HEART trial. A deep learning-based total plaque volume of 238·5 mm3 or higher was associated with an increased risk of myocardial infarction (hazard ratio [HR] 5·36, 95% CI 1·70–16·86; p=0·0042) after adjustment for the presence of deep learning-based obstructive stenosis (HR 2·49, 1·07–5·50; p=0·0089) and the ASSIGN clinical risk score (HR 1·01, 0·99–1·04; p=0·35).

Interpretation

Our novel, externally validated deep learning system provides rapid measurements of plaque volume and stenosis severity from CCTA that agree closely with expert readers and intravascular ultrasound, and could have prognostic value for future myocardial infarction.

Funding

National Heart, Lung, and Blood Institute and the Miriam & Sheldon G Adelson Medical Research Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮曳发布了新的文献求助10
2秒前
5秒前
8秒前
YY发布了新的文献求助10
10秒前
12秒前
冷酷愚志完成签到,获得积分10
17秒前
18秒前
浮曳完成签到,获得积分10
26秒前
羽生结弦的馨馨完成签到,获得积分10
31秒前
44秒前
45秒前
52秒前
都市隶人完成签到,获得积分20
1分钟前
桐桐应助沁沁沁采纳,获得10
1分钟前
1分钟前
zzzzzz发布了新的文献求助10
1分钟前
olekravchenko发布了新的文献求助10
1分钟前
msn00完成签到,获得积分10
1分钟前
沁沁沁完成签到,获得积分10
1分钟前
1分钟前
沁沁沁发布了新的文献求助10
1分钟前
遇上就这样吧应助nassim采纳,获得50
1分钟前
彦子完成签到 ,获得积分10
1分钟前
Sea_U应助羽生结弦的馨馨采纳,获得10
1分钟前
1分钟前
月5114完成签到 ,获得积分10
1分钟前
乐观尔容发布了新的文献求助10
1分钟前
调皮怜容完成签到 ,获得积分20
1分钟前
HuiHui完成签到,获得积分10
1分钟前
都市隶人发布了新的文献求助10
1分钟前
汉堡包应助锦林采纳,获得10
2分钟前
牛八先生完成签到,获得积分10
2分钟前
2分钟前
锦林发布了新的文献求助10
2分钟前
zbzfp完成签到,获得积分10
2分钟前
2分钟前
悦耳破茧发布了新的文献求助10
2分钟前
2分钟前
锦林完成签到,获得积分10
2分钟前
香蕉觅云应助悦耳破茧采纳,获得10
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792399
求助须知:如何正确求助?哪些是违规求助? 3336688
关于积分的说明 10281848
捐赠科研通 3053424
什么是DOI,文献DOI怎么找? 1675608
邀请新用户注册赠送积分活动 803581
科研通“疑难数据库(出版商)”最低求助积分说明 761468