清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study

医学 血管内超声 组内相关 狭窄 内科学 心脏病学 冠状动脉疾病 放射科 心肌梗塞
作者
Andrew Lin,Nipun Manral,Priscilla McElhinney,Aditya Killekar,Hidenari Matsumoto,Jacek Kwiecinski,Konrad Pieszko,Aryabod Razipour,Kajetan Grodecki,Caroline Park,Yuka Otaki,Mhairi Doris,Alan C Kwan,Donghee Han,Keiichiro Kuronuma,Guadalupe Flores Tomasino,Evangelos Tzolos,Aakash Shanbhag,Markus Goeller,Mohamed Marwan,Heidi Gransar,Balaji K Tamarappoo,Sebastien Cadet,Stephan Achenbach,Stephen J Nicholls,Dennis T Wong,Daniel S Berman,Marc Dweck,David E Newby,Michelle C Williams,Piotr J Slomka,Damini Dey
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:4 (4): e256-e265
标识
DOI:10.1016/s2589-7500(22)00022-x
摘要

Summary

Background

Atherosclerotic plaque quantification from coronary CT angiography (CCTA) enables accurate assessment of coronary artery disease burden and prognosis. We sought to develop and validate a deep learning system for CCTA-derived measures of plaque volume and stenosis severity.

Methods

This international, multicentre study included nine cohorts of patients undergoing CCTA at 11 sites, who were assigned into training and test sets. Data were retrospectively collected on patients with a wide range of clinical presentations of coronary artery disease who underwent CCTA between Nov 18, 2010, and Jan 25, 2019. A novel deep learning convolutional neural network was trained to segment coronary plaque in 921 patients (5045 lesions). The deep learning network was then applied to an independent test set, which included an external validation cohort of 175 patients (1081 lesions) and 50 patients (84 lesions) assessed by intravascular ultrasound within 1 month of CCTA. We evaluated the prognostic value of deep learning-based plaque measurements for fatal or non-fatal myocardial infarction (our primary outcome) in 1611 patients from the prospective SCOT-HEART trial, assessed as dichotomous variables using multivariable Cox regression analysis, with adjustment for the ASSIGN clinical risk score.

Findings

In the overall test set, there was excellent or good agreement, respectively, between deep learning and expert reader measurements of total plaque volume (intraclass correlation coefficient [ICC] 0·964) and percent diameter stenosis (ICC 0·879; both p<0·0001). When compared with intravascular ultrasound, there was excellent agreement for deep learning total plaque volume (ICC 0·949) and minimal luminal area (ICC 0·904). The mean per-patient deep learning plaque analysis time was 5·65 s (SD 1·87) versus 25·66 min (6·79) taken by experts. Over a median follow-up of 4·7 years (IQR 4·0–5·7), myocardial infarction occurred in 41 (2·5%) of 1611 patients from the SCOT-HEART trial. A deep learning-based total plaque volume of 238·5 mm3 or higher was associated with an increased risk of myocardial infarction (hazard ratio [HR] 5·36, 95% CI 1·70–16·86; p=0·0042) after adjustment for the presence of deep learning-based obstructive stenosis (HR 2·49, 1·07–5·50; p=0·0089) and the ASSIGN clinical risk score (HR 1·01, 0·99–1·04; p=0·35).

Interpretation

Our novel, externally validated deep learning system provides rapid measurements of plaque volume and stenosis severity from CCTA that agree closely with expert readers and intravascular ultrasound, and could have prognostic value for future myocardial infarction.

Funding

National Heart, Lung, and Blood Institute and the Miriam & Sheldon G Adelson Medical Research Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蛋白聚糖发布了新的文献求助10
5秒前
yzy完成签到,获得积分10
7秒前
DrCuiTianjin完成签到 ,获得积分10
10秒前
手术刀完成签到 ,获得积分10
11秒前
Microbiota完成签到,获得积分10
14秒前
蛋白聚糖完成签到,获得积分10
15秒前
lling完成签到 ,获得积分10
17秒前
跳跃的鹏飞完成签到 ,获得积分10
19秒前
淡然念双完成签到,获得积分10
20秒前
Kevin完成签到 ,获得积分20
23秒前
开放访天完成签到 ,获得积分10
25秒前
45秒前
DreamRunner0410完成签到 ,获得积分10
47秒前
mario发布了新的文献求助10
52秒前
du完成签到 ,获得积分10
55秒前
mario完成签到,获得积分10
1分钟前
个性松完成签到 ,获得积分10
1分钟前
宇文雨文完成签到 ,获得积分10
1分钟前
张流筝完成签到 ,获得积分10
1分钟前
LXYzzm完成签到,获得积分20
1分钟前
LXYzzm发布了新的文献求助10
1分钟前
科研狗完成签到 ,获得积分0
1分钟前
耕牛热完成签到,获得积分10
1分钟前
嘉星糖完成签到,获得积分10
1分钟前
氟锑酸完成签到 ,获得积分10
1分钟前
Xzx1995完成签到 ,获得积分10
1分钟前
千帆破浪完成签到 ,获得积分10
1分钟前
852应助勇往直前采纳,获得10
1分钟前
LXYzzm发布了新的文献求助10
1分钟前
tianshanfeihe完成签到 ,获得积分10
1分钟前
34101127完成签到 ,获得积分10
1分钟前
玩命的十三完成签到 ,获得积分10
1分钟前
huanghe完成签到,获得积分10
1分钟前
如意竺完成签到,获得积分10
2分钟前
爆米花应助LXYzzm采纳,获得10
2分钟前
文静的紫萱完成签到,获得积分10
2分钟前
2分钟前
勇往直前发布了新的文献求助10
2分钟前
yinyin完成签到 ,获得积分10
2分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4162527
求助须知:如何正确求助?哪些是违规求助? 3698081
关于积分的说明 11675108
捐赠科研通 3388455
什么是DOI,文献DOI怎么找? 1858167
邀请新用户注册赠送积分活动 918833
科研通“疑难数据库(出版商)”最低求助积分说明 831703