A 250 m resolution global leaf area index product derived from MODIS surface reflectance data

叶面积指数 遥感 中分辨率成像光谱仪 先进超高分辨率辐射计 环境科学 卫星 光谱辐射计 图像分辨率 比例(比率) 反射率 地理 地图学 物理 光学 天文 生物 生态学
作者
Zhiqiang Xiao,Jinling Song,Hua Yang,Rui Sun,Juan Li
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:43 (4): 1409-1429 被引量:6
标识
DOI:10.1080/01431161.2022.2039415
摘要

There are several global leaf area index (LAI) products currently available. The spatial resolution of these products is 500 m and above, which is unsuitable for many applications requiring higher spatial resolution. In the past several years, we developed a method to estimate the LAI from time series satellite remote sensing data using general regression neural networks. The method has been used to generate global LAI products at 500 m and 1000 m from Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance data, and a global LAI product at 0.05° from Advanced Very High Resolution Radiometer (AVHRR) surface reflectance data. In this study, the method was extended to generate a global LAI product at 250 m (one of the MUltiscale Satellite remotE Sensing (MUSES) product suite) from MODIS surface reflectance data in the red and near-infrared (NIR) bands. As far as we know, it is the first global LAI product at 250 m spatial resolution and is the highest spatial resolution global LAI product available. The spatial and temporal consistency of the MUSES LAI product was evaluated by comparing it with the MODIS LAI product, and the MUSES LAI product was validated by high-resolution reference maps at the Validation of Land European Remote Sensing Instruments (VALERI) and Implementing Multi-Scale Agricultural Indicators Exploiting Sentinels (IMAGINES) sites representative of different biomes. The root mean square error (RMSE) of the MUSES LAI product versus the LAI values derived from the high-resolution reference maps over the VALERI and IMAGINES sites was 0.9984, and the bias of the MUSES LAI product was −0.2005.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闵凝竹完成签到 ,获得积分0
3秒前
王小嘻完成签到 ,获得积分10
5秒前
Gong完成签到 ,获得积分10
6秒前
Jasper应助木木采纳,获得50
7秒前
奕奕完成签到,获得积分10
13秒前
传奇3应助学术白菜采纳,获得10
17秒前
18秒前
千空发布了新的文献求助10
18秒前
震动的听枫完成签到,获得积分10
18秒前
20秒前
20秒前
翠翠发布了新的文献求助10
22秒前
hulala发布了新的文献求助10
23秒前
916应助rrrrroxie采纳,获得30
23秒前
JamesPei应助爱听歌的青筠采纳,获得10
23秒前
24秒前
123发布了新的文献求助10
25秒前
29秒前
Yina发布了新的文献求助10
30秒前
31秒前
耽书是宿缘完成签到,获得积分20
34秒前
34秒前
35秒前
叶映安发布了新的文献求助10
35秒前
37秒前
38秒前
jonghuang发布了新的文献求助10
39秒前
坚定语蕊发布了新的文献求助10
42秒前
柔之发布了新的文献求助10
43秒前
48秒前
CCY完成签到 ,获得积分10
49秒前
saberLee完成签到,获得积分10
49秒前
翠翠完成签到,获得积分20
50秒前
55秒前
56秒前
小二郎应助提拉米草采纳,获得10
57秒前
CyrusSo524应助茂飞采纳,获得10
59秒前
1分钟前
晓宇发布了新的文献求助10
1分钟前
orixero应助坚定语蕊采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778363
求助须知:如何正确求助?哪些是违规求助? 3324059
关于积分的说明 10216978
捐赠科研通 3039300
什么是DOI,文献DOI怎么找? 1667944
邀请新用户注册赠送积分活动 798438
科研通“疑难数据库(出版商)”最低求助积分说明 758385