Rupture risk prediction of cerebral aneurysms using a novel convolutional neural network-based deep learning model

卷积神经网络 血流动力学 医学 人工智能 接收机工作特性 深度学习 灵敏度(控制系统) 人工神经网络 模式识别(心理学) 机器学习 心脏病学 计算机科学 内科学 电子工程 工程类
作者
Hyeondong Yang,Kwang‐Chun Cho,Jung‐Jae Kim,Jae Ho Kim,Yong Bae Kim,Je Hoon Oh
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:15 (2): 200-204 被引量:30
标识
DOI:10.1136/neurintsurg-2021-018551
摘要

Cerebral aneurysms should be treated before rupture because ruptured aneurysms result in serious disability. Therefore, accurate prediction of rupture risk is important and has been estimated using various hemodynamic factors.To suggest a new way to predict rupture risk in cerebral aneurysms using a novel deep learning model based on hemodynamic parameters for better decision-making about treatment.A novel convolutional neural network (CNN) model was used for rupture risk prediction retrospectively of 123 aneurysm cases. To include the effect of hemodynamic parameters into the CNN, the hemodynamic parameters were first calculated using computational fluid dynamics and fluid-structure interaction. Then, they were converted into images for training the CNN using a novel approach. In addition, new data augmentation methods were devised to obtain sufficient training data. A total of 53,136 images generated by data augmentation were used to train and test the CNN.The CNNs trained with wall shear stress (WSS), strain, and combination images had area under the receiver operating characteristics curve values of 0.716, 0.741, and 0.883, respectively. Based on the cut-off values, the CNN trained with WSS (sensitivity: 0.5, specificity: 0.79) or strain (sensitivity: 0.74, specificity: 0.71) images alone was not highly predictive. However, the CNN trained with combination images of WSS and strain showed a sensitivity and specificity of 0.81 and 0.82, respectively.CNN-based deep learning algorithm using hemodynamic factors, including WSS and strain, could be an effective tool for predicting rupture risk in cerebral aneurysms with good predictive accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
心灵美的幼蓉完成签到,获得积分10
刚刚
鱼啊鱼完成签到,获得积分10
刚刚
春春发布了新的文献求助10
1秒前
1秒前
香蕉千风完成签到 ,获得积分10
1秒前
1秒前
Lululu发布了新的文献求助20
1秒前
1秒前
布鲁爱思完成签到,获得积分10
2秒前
3秒前
珺晔完成签到,获得积分10
3秒前
3秒前
braving发布了新的文献求助10
4秒前
木心长发布了新的文献求助10
4秒前
Cruffin完成签到 ,获得积分10
4秒前
肚子没墨水的GGBOND完成签到,获得积分10
4秒前
鱼啊鱼发布了新的文献求助10
4秒前
木沐发布了新的文献求助10
4秒前
5秒前
烂漫的闭月完成签到,获得积分10
6秒前
6秒前
wwwwwnnnnn完成签到 ,获得积分10
7秒前
珺晔发布了新的文献求助10
7秒前
明芬发布了新的文献求助10
8秒前
从容飞凤发布了新的文献求助10
8秒前
qqqxl完成签到,获得积分10
8秒前
醉爱星星完成签到 ,获得积分10
8秒前
9秒前
LL发布了新的文献求助10
9秒前
9秒前
10秒前
热心梦山发布了新的文献求助10
10秒前
kk关闭了kk文献求助
10秒前
动听听安完成签到,获得积分10
11秒前
12秒前
风的季节完成签到,获得积分0
12秒前
花泽类发布了新的文献求助10
13秒前
脑洞疼应助从容飞凤采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308436
求助须知:如何正确求助?哪些是违规求助? 4453578
关于积分的说明 13857553
捐赠科研通 4341263
什么是DOI,文献DOI怎么找? 2383753
邀请新用户注册赠送积分活动 1378386
关于科研通互助平台的介绍 1346379