Prediction and Optimization of the Design and Process Parameters of a Hybrid DED Product Using Artificial Intelligence

拓扑优化 机械工程 过程(计算) 材料科学 保险丝(电气) 涂层 挤压 计算机科学 拓扑(电路) 结构工程 工程类 有限元法 复合材料 电气工程 操作系统
作者
Metin Çallı,Emre İsa Albak,Ferruh Öztürk
出处
期刊:Applied sciences [MDPI AG]
卷期号:12 (10): 5027-5027 被引量:13
标识
DOI:10.3390/app12105027
摘要

Directed energy deposition (DED) is an additive manufacturing process used in manufacturing free form geometries, repair applications, coating and surface modification, and fabrication of functionally graded materials. It is a process in which focused thermal energy is used to fuse materials by melting. Thermal effects can cause distortions and defects on the parts during the DED process, therefore they should be evaluated and taken into account during the manufacturing of products. Melting pool control and DED bead geometries should be defined properly as well. In this work, an Artificial Neural Network model has been applied considering the DED process parameters in order to predict the geometrical patterns and create a local reinforced product as a hybrid manufacturing technology. Although lots of studies are available on topology optimization for manufacturing methods such as casting, extrusion, and powder bed fusion, topology optimization for the DED process is not widely taken into consideration to predict the design geometrical patterns. DOE RSM and ANN approaches were applied in this study to predict convenient dimensions, topology based geometrical patterns of local stiffeners and heat source power optimizing the energy, total mass, and peak force results of the hybrid part. A single bead track deposition is simulated in terms of validation of the numerical heat source model, and cross-sections of the beads are analysed. A cross-member structure is manufactured using the DED device and the structure is correlated under the three point bending physical conditions on test bench. It has been investigated that locally reinforced cross beam has much more energy absorption and peak force values than plain model. The results showed that the proposed NN-GA is a promising approach to generate the topology based geometrical patterns and process parameters which can be used to create a local reinforced product as hybrid manufacturing technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
背后的若之完成签到 ,获得积分10
3秒前
4秒前
4秒前
5秒前
hc发布了新的文献求助10
6秒前
sun完成签到 ,获得积分10
6秒前
6秒前
沉默是金发布了新的文献求助30
8秒前
李爱国应助找不到头大采纳,获得10
9秒前
10秒前
雷电法王桃大师完成签到,获得积分20
10秒前
玖玖发布了新的文献求助10
11秒前
海浪发布了新的文献求助10
12秒前
张二田完成签到,获得积分10
15秒前
16秒前
tyj完成签到,获得积分10
16秒前
蓝天应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
17秒前
Ning应助科研通管家采纳,获得10
17秒前
warithy应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
XY应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
ronron应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
22秒前
25秒前
Luffa完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560383
求助须知:如何正确求助?哪些是违规求助? 4645536
关于积分的说明 14675482
捐赠科研通 4586681
什么是DOI,文献DOI怎么找? 2516518
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951