Using random forests to predict passengers’ thermal comfort in underground train carriages

支持向量机 均方误差 随机森林 热舒适性 均方根 模拟 热感觉 逻辑回归 统计 热的 计算机科学 工程类 人工智能 数学 气象学 地理 电气工程
作者
Kangkang Huang,Shihua Lu,Xinjun Li,Weiwei Chen
出处
期刊:Indoor and Built Environment [SAGE Publishing]
卷期号:32 (2): 343-354 被引量:5
标识
DOI:10.1177/1420326x221110046
摘要

This research developed an intelligent ensemble machine learning prediction model for the thermal comfort of passengers inside the compartment of the subway. Data sources used for data-driven modelling were obtained from on-site measurements and passengers’ questionnaires in the compartments of the Nanjing subway. The four models were established using methodologies of Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM) and Decision Tree (DT) in machine learning, respectively. The performance of the RF method was compared with DT, LR and SVM in terms of conventional statistical metrics, namely, Mean Squared Error (MSE), Root Mean Square Error (RMSE) and Correlation Coefficients squares (R 2 ). Thermal Sensation Vote with the seven-level indicator (TSV-7) and Thermal Sensation Vote with the three-level indicator (TSV-3) were employed to obtain passengers’ thermal comfort and evaluate the models’ predictions. In this study, the R 2 value of the RF model is 0.6527 and 0.6607 for TSV-7 and TSV-3, which shows higher accuracy than DT, LR and SVM models in predicting the two kinds of Thermal Sensation Vote (TSV). The results show that the predictive performance of the proposed RF model is outstanding, and it can predict the TSV value of passengers inside the compartment of the subway more efficiently.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助HJY采纳,获得10
刚刚
乐乐应助小黑子fanfan采纳,获得10
1秒前
科研通AI5应助zzznznnn采纳,获得10
1秒前
山火完成签到,获得积分10
1秒前
安静海露发布了新的文献求助10
2秒前
2秒前
shilong.yang完成签到,获得积分10
3秒前
沉静香氛完成签到 ,获得积分10
4秒前
朱佳宁发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
香蕉秋寒完成签到,获得积分10
7秒前
11完成签到,获得积分10
8秒前
8秒前
YUN发布了新的文献求助10
8秒前
神勇的萝发布了新的文献求助10
9秒前
amongferns发布了新的文献求助10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得30
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
古人发布了新的文献求助10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
11秒前
11秒前
科研通AI2S应助现代书雪采纳,获得30
11秒前
ttttt发布了新的文献求助10
13秒前
13秒前
pokexuejiao发布了新的文献求助20
13秒前
13秒前
科研完成签到,获得积分20
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796339
求助须知:如何正确求助?哪些是违规求助? 3341373
关于积分的说明 10306159
捐赠科研通 3057930
什么是DOI,文献DOI怎么找? 1677992
邀请新用户注册赠送积分活动 805746
科研通“疑难数据库(出版商)”最低求助积分说明 762775