NADPH oxidase family proteins: signaling dynamics to disease management

NADPH氧化酶 细胞生物学 信号转导 活性氧 胞浆 超氧化物 慢性肉芽肿性疾病 生物 细胞信号 炎症 氧化酶试验 生物化学 免疫学
作者
Rizwana Begum,Shilpa Thota,Abubakar Abdulkadir,Gagandeep Kaur,Prathyusha Bagam,Sanjay Batra
出处
期刊:Cellular & Molecular Immunology [Springer Nature]
卷期号:19 (6): 660-686 被引量:42
标识
DOI:10.1038/s41423-022-00858-1
摘要

Reactive oxygen species (ROS) are pervasive signaling molecules in biological systems. In humans, a lack of ROS causes chronic and extreme bacterial infections, while uncontrolled release of these factors causes pathologies due to excessive inflammation. Professional phagocytes such as neutrophils (PMNs), eosinophils, monocytes, and macrophages use superoxide-generating NADPH oxidase (NOX) as part of their arsenal of antimicrobial mechanisms to produce high levels of ROS. NOX is a multisubunit enzyme complex composed of five essential subunits, two of which are localized in the membrane, while three are localized in the cytosol. In resting phagocytes, the oxidase complex is unassembled and inactive; however, it becomes activated after cytosolic components translocate to the membrane and are assembled into a functional oxidase. The NOX isoforms play a variety of roles in cellular differentiation, development, proliferation, apoptosis, cytoskeletal control, migration, and contraction. Recent studies have identified NOX as a major contributor to disease pathologies, resulting in a shift in focus on inhibiting the formation of potentially harmful free radicals. Therefore, a better understanding of the molecular mechanisms and the transduction pathways involved in NOX-mediated signaling is essential for the development of new therapeutic agents that minimize the hyperproduction of ROS. The current review provides a thorough overview of the various NOX enzymes and their roles in disease pathophysiology, highlights pharmacological strategies, and discusses the importance of computational modeling for future NOX-related studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
6秒前
6秒前
沉静丸子完成签到,获得积分10
6秒前
7秒前
NexusExplorer应助ShuXU采纳,获得10
7秒前
风之子完成签到,获得积分10
7秒前
田様应助CMCM采纳,获得10
8秒前
9秒前
脑洞疼应助简晴采纳,获得100
9秒前
NexusExplorer应助倘若采纳,获得10
11秒前
11秒前
11秒前
11秒前
liu发布了新的文献求助10
12秒前
12秒前
niki发布了新的文献求助10
12秒前
机智的青槐完成签到,获得积分20
13秒前
13秒前
小小杨完成签到,获得积分10
14秒前
焦野完成签到,获得积分10
14秒前
ye发布了新的文献求助10
14秒前
15秒前
木象爱火锅完成签到,获得积分10
16秒前
Venjelee完成签到,获得积分10
16秒前
17秒前
hushengtan发布了新的文献求助10
17秒前
搜集达人应助谢育龙采纳,获得10
18秒前
SOLOMON应助勤劳三问采纳,获得10
19秒前
跳跃毒娘发布了新的文献求助10
19秒前
丘比特应助yjf,123采纳,获得10
20秒前
小二郎应助浩浩采纳,获得10
21秒前
hhhzzy完成签到 ,获得积分10
21秒前
CMCM发布了新的文献求助10
23秒前
西门冰岚完成签到 ,获得积分10
25秒前
27秒前
29秒前
天将明完成签到 ,获得积分10
29秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
The Three Stars Each: The Astrolabes and Related Texts 900
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
Glossary of Geology 400
Additive Manufacturing Design and Applications 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2476092
求助须知:如何正确求助?哪些是违规求助? 2140468
关于积分的说明 5455077
捐赠科研通 1863811
什么是DOI,文献DOI怎么找? 926556
版权声明 562846
科研通“疑难数据库(出版商)”最低求助积分说明 495755