Forecasting tourist arrivals using dual decomposition strategy and an improved fuzzy time series method

计算机科学 水准点(测量) 对偶(语法数字) 系列(地层学) 分解 模糊逻辑 随机性 时间序列 旅游 离散化 数据挖掘 数学优化 计量经济学 人工智能 机器学习 数学 统计 地理 艺术 古生物学 生态学 数学分析 文学类 大地测量学 考古 生物
作者
Xiaozhen Liang,Zhikun Wu
出处
期刊:Neural Computing and Applications [Springer Science+Business Media]
卷期号:35 (10): 7161-7183 被引量:2
标识
DOI:10.1007/s00521-021-06671-7
摘要

Tourist arrivals forecasting has become an increasingly hot issue due to its important role in the tourism industry and hence the whole economy of a country. However, owing to the complex characteristics of tourist arrivals series, such as seasonality, randomness, and non-linearity, forecasting tourist arrivals remains a challenging task. In this paper, a hybrid model of dual decomposition and an improved fuzzy time series method is proposed for tourist arrivals forecasting. In the novel model, two stages are mainly involved, i.e., dual decomposition and integrated forecasting. In the first stage, a dual decomposition strategy, which can overcome the potential defects of individual decomposition approaches, is designed to fully extract the main features of the tourist arrivals series and reduce the data complexity. In the second stage, a fuzzy time series method with fuzzy C-means algorithm as the discretization method is developed for prediction. In the empirical study, the proposed model is implemented to predict the monthly tourist arrivals to Hong Kong from USA, UK, and Germany. The results show that our hybrid model can obtain more accurate and more robust prediction results than benchmark models. Relative to the benchmark fuzzy time series models, the hybrid models using traditional decomposition methods and strategies, as well as the traditional single prediction models, our proposed model shows a significant improvement, with the improvement percentages at about 80, 70, and 50%, respectively. Therefore, we can conclude that the proposed model is a very promising tool for forecasting future tourist arrivals or other related fields with complex time series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
suzhenyue完成签到,获得积分10
2秒前
3秒前
zzzzzzy发布了新的文献求助10
7秒前
7秒前
鼠小姐应助hyy采纳,获得10
8秒前
8秒前
8秒前
QiaoHL发布了新的文献求助200
9秒前
张瑞宁完成签到,获得积分10
10秒前
10秒前
田様应助被淹死的鱼采纳,获得10
11秒前
kingripple发布了新的文献求助10
12秒前
zh123发布了新的文献求助10
12秒前
13秒前
彭于晏应助满意的友桃采纳,获得10
15秒前
16秒前
air发布了新的文献求助10
16秒前
16秒前
jenningseastera应助太叔书南采纳,获得10
18秒前
刘屿柠发布了新的文献求助10
18秒前
gangstashit发布了新的文献求助10
19秒前
20秒前
八一完成签到,获得积分10
21秒前
King16发布了新的文献求助20
21秒前
刘屿柠完成签到,获得积分10
23秒前
柯语雪完成签到 ,获得积分10
24秒前
24秒前
24秒前
25秒前
hzaaaa完成签到,获得积分10
26秒前
小二郎应助nanjizi采纳,获得10
26秒前
爱听歌采白完成签到,获得积分10
27秒前
多情晓曼完成签到,获得积分20
29秒前
30秒前
boshi发布了新的文献求助10
30秒前
31秒前
CyrusSo524完成签到,获得积分10
32秒前
fei完成签到,获得积分10
32秒前
joy完成签到,获得积分10
32秒前
大白完成签到 ,获得积分10
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800658
求助须知:如何正确求助?哪些是违规求助? 3346007
关于积分的说明 10328098
捐赠科研通 3062460
什么是DOI,文献DOI怎么找? 1680999
邀请新用户注册赠送积分活动 807337
科研通“疑难数据库(出版商)”最低求助积分说明 763627