清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A New Severity of Illness Scale Using a Subset of Acute Physiology and Chronic Health Evaluation Data Elements Shows Comparable Predictive Accuracy*

医学 疾病严重程度 疾病严重程度 急性病 阿帕奇II 心理干预 重症监护医学 试验预测值 重症监护 接收机工作特性 病危 危重病 急诊医学 内科学 重症监护室 精神科
作者
Alistair E. W. Johnson,Andrew A. Kramer,Gari D. Clifford
出处
期刊:Critical Care Medicine [Lippincott Williams & Wilkins]
卷期号:41 (7): 1711-1718 被引量:236
标识
DOI:10.1097/ccm.0b013e31828a24fe
摘要

Severity of illness scores have gained considerable interest for their use in predicting outcomes such as mortality and length of stay. The most sophisticated scoring systems require the collection of numerous physiologic measurements, making their use in real-time difficult. A severity of illness score based on a few parameters that can be captured electronically would be of great benefit. Using a machine-learning technique known as particle swarm optimization, we attempted to reduce the number of physiologic parameters collected in the Acute Physiology, Age, and Chronic Health Evaluation IV system without losing predictive accuracy.Retrospective cohort study of ICU admissions from 2007 to 2011.Eighty-six ICUs at 49 U.S. hospitals where an Acute Physiology, Age, and Chronic Health Evaluation IV system had been installed.81,087 admissions, of which 72,474 did not have any missing values.None.Machine-learning algorithms were used to come up with the minimal set of variables that were capable of yielding an accurate severity of illness score: the Oxford Acute Severity of Illness Score. Predictive models of ICU mortality using Oxford Acute Severity of Illness Score were developed on admissions during 2007-2009 and validated on admissions during 2010-2011. The most parsimonious Oxford Acute Severity of Illness Score consisted of seven physiologic measurements, elective surgery, age, and prior length of stay. Predictive models of ICU mortality using Oxford Acute Severity of Illness Score achieved an area under the receiver operating characteristic curve of 0.88 and calibrated well.A reduced severity of illness score had discrimination and calibration equivalent to more complex existing models. This was accomplished in large part using machine-learning algorithms, which can effectively account for the nonlinear associations between physiologic parameters and outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜乎贝贝完成签到 ,获得积分10
13秒前
czj完成签到 ,获得积分10
25秒前
DJ_Tokyo完成签到,获得积分10
35秒前
海人完成签到 ,获得积分10
1分钟前
想吃芝士焗饭完成签到 ,获得积分10
1分钟前
大模型应助陶醉的手套采纳,获得10
1分钟前
斯文败类应助nick采纳,获得10
1分钟前
1分钟前
nick发布了新的文献求助10
1分钟前
科研阿白完成签到 ,获得积分10
2分钟前
CMUSK完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
阿德利企鹅完成签到 ,获得积分10
3分钟前
陶醉的手套完成签到,获得积分10
3分钟前
三人水明完成签到 ,获得积分10
3分钟前
Yolenders完成签到 ,获得积分10
3分钟前
爱静静应助自然幼翠采纳,获得30
3分钟前
雪流星完成签到 ,获得积分10
3分钟前
sci完成签到 ,获得积分10
4分钟前
高数数完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
22小研究员完成签到,获得积分10
5分钟前
jyy发布了新的文献求助200
5分钟前
凌露完成签到 ,获得积分0
5分钟前
兔孖完成签到,获得积分10
5分钟前
5分钟前
兔孖发布了新的文献求助10
6分钟前
一早完成签到 ,获得积分10
6分钟前
chichenglin完成签到 ,获得积分10
6分钟前
迅速千愁完成签到 ,获得积分10
6分钟前
无悔完成签到 ,获得积分10
6分钟前
自然之水完成签到,获得积分10
6分钟前
7分钟前
soong完成签到 ,获得积分10
7分钟前
个性仙人掌完成签到 ,获得积分10
7分钟前
谨慎鹏涛完成签到 ,获得积分10
7分钟前
甜甜的tiantian完成签到 ,获得积分10
8分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800957
求助须知:如何正确求助?哪些是违规求助? 3346489
关于积分的说明 10329490
捐赠科研通 3063031
什么是DOI,文献DOI怎么找? 1681329
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763714