A Clinical Model To Estimate the Pretest Probability of Lung Cancer in Patients With Solitary Pulmonary Nodules

医学 置信区间 恶性肿瘤 肺癌 肺孤立结节 优势比 逻辑回归 接收机工作特性 结核(地质) 试验前后概率 退伍军人事务部 放射科 核医学 内科学 古生物学 生物
作者
Michael K. Gould,Lakshmi Ananth,Paul G. Barnett
出处
期刊:Chest [Elsevier]
卷期号:131 (2): 383-388 被引量:434
标识
DOI:10.1378/chest.06-1261
摘要

Background:Estimating the clinical probability of malignancy in patients with a solitary pulmonary nodule (SPN) can facilitate the selection and interpretation of subsequent diagnostic tests. Methods:We used multiple logistic regression analysis to identify independent clinical predictors of malignancy and to develop a parsimonious clinical prediction model to estimate the pretest probability of malignancy in a geographically diverse sample of 375 veterans with SPNs. We used data from Department of Veterans Affairs (VA) administrative databases and a recently completed VA Cooperative Study that evaluated the accuracy of positron emission tomography (PET) scans for the diagnosis of SPNs. Results:The mean (± SD) age of subjects in the sample was 65.9 ± 10.7 years. The prevalence of malignant SPNs was 54%. Most participants were either current smokers (n = 177) or former smokers (n = 177). Independent predictors of malignant SPNs included a positive smoking history (odds ratio [OR], 7.9; 95% confidence interval [CI], 2.6 to 23.6), older age (OR, 2.2 per 10-year increment; 95% CI, 1.7 to 2.8), larger nodule diameter (OR, 1.1 per 1-mm increment; 95% CI, 1.1 to 1.2), and time since quitting smoking (OR, 0.6 per 10-year increment; 95% CI, 0.5 to 0.7). Model accuracy was very good (area under the curve of the receiver operating characteristic, 0.79; 95% CI, 0.74 to 0.84), and there was excellent agreement between the predicted probability and the observed frequency of malignant SPNs. Conclusions:Our prediction rule can be used to estimate the pretest probability of malignancy in patients with SPNs, and thereby facilitate clinical decision making when selecting and interpreting the results of diagnostic tests such as PET imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助秀秀采纳,获得10
刚刚
1秒前
犹豫大侠发布了新的文献求助10
1秒前
vippp发布了新的文献求助10
2秒前
啦啦完成签到,获得积分10
2秒前
CR7应助kk采纳,获得20
3秒前
成功上岸完成签到,获得积分20
3秒前
曾峥发布了新的文献求助10
4秒前
4秒前
啦啦发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
共享精神应助Jay采纳,获得10
8秒前
叫我富婆儿完成签到,获得积分10
9秒前
DouBo发布了新的文献求助10
9秒前
shi hui应助陌陌采纳,获得10
9秒前
大气亦巧发布了新的文献求助10
9秒前
浮游应助无心的芸采纳,获得10
10秒前
10秒前
10秒前
乐观小土豆完成签到,获得积分20
10秒前
11秒前
12秒前
行走人生发布了新的文献求助10
12秒前
万能图书馆应助如如采纳,获得10
12秒前
吴雨涛完成签到,获得积分10
12秒前
潘忠旭完成签到,获得积分10
12秒前
12秒前
可爱小张发布了新的文献求助10
13秒前
orangevv发布了新的文献求助10
13秒前
擦撒擦擦完成签到,获得积分10
14秒前
无花果应助allenise采纳,获得10
14秒前
科研通AI2S应助啦啦采纳,获得10
14秒前
15秒前
秀秀发布了新的文献求助10
15秒前
希望天下0贩的0应助曾峥采纳,获得10
15秒前
光华发布了新的文献求助10
16秒前
王一帆发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299586
求助须知:如何正确求助?哪些是违规求助? 4447698
关于积分的说明 13843511
捐赠科研通 4333326
什么是DOI,文献DOI怎么找? 2378747
邀请新用户注册赠送积分活动 1374030
关于科研通互助平台的介绍 1339544