物理
色散关系
色散(光学)
非线性薛定谔方程
非线性系统
平面(几何)
振幅
数学分析
广义相对论的精确解
转化(遗传学)
经典力学
量子力学
数学
基因
生物化学
化学
几何学
作者
Nail Akhmediev,Adrian Ankiewicz
出处
期刊:Physical Review A
[American Physical Society]
日期:1993-04-01
卷期号:47 (4): 3213-3221
被引量:82
标识
DOI:10.1103/physreva.47.3213
摘要
``First-order'' exact solutions of the nonlinear Schr\"odinger equation (NLSE) with positive group-velocity dispersion are obtained. We find a three-parameter family of solutions that are finite everywhere; particular cases include periodic solutions expressed in terms of elliptic Jacobi functions, stationary periodic solutions, and solutions describing the collision or excitation of two dark solitons with equal amplitudes. A classification of solutions using the plane of their parameters, a geometrical description on the complex plane, and physical interpretations of the solutions obtained are given. A simple relation, which permits transformation of the solutions of the NLSE in the anomalous-dispersion regime into solutions of the NLSE in the normal-dispersion regime, is also discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI