维数之咒
计算机科学
势能面
蒙特卡罗方法
转化(遗传学)
路径(计算)
曲面(拓扑)
特征(语言学)
统计物理学
生物系统
算法
人工智能
数学
化学
分子
物理
统计
基因
生物
哲学
有机化学
生物化学
程序设计语言
语言学
几何学
作者
Cheng Shang,Zhi‐Pan Liu
摘要
We propose an unbiased general-purpose potential energy surface (PES) searching method for both the structure and the pathway prediction of a complex system. The method is based on the idea of bias-potential-driven dynamics and Metropolis Monte Carlo. A central feature of the method is able to perturb smoothly a structural configuration toward a new configuration and simultaneously has the ability to surmount the high barrier in the path. We apply the method for locating the global minimum (GM) of short-ranged Morse clusters up to 103 atoms starting from a random structure without using extra information from the system. In addition to GM searching, the method can identify the pathways for chemical reactions with large dimensionality, as demonstrated in a nanohelix transformation containing 222 degrees of freedoms.
科研通智能强力驱动
Strongly Powered by AbleSci AI