Interaction Screening for Ultrahigh-Dimensional Data

计算机科学 一致性(知识库) 集合(抽象数据类型) 财产(哲学) 选择(遗传算法) 软件 理论计算机科学 算法 数学优化 数学 机器学习 人工智能 认识论 哲学 程序设计语言
作者
Ning Hao,Hao Helen Zhang
标识
DOI:10.1080/01621459.2014.881741
摘要

In ultra-high dimensional data analysis, it is extremely challenging to identify important interaction effects, and a top concern in practice is computational feasibility. For a data set with n observations and p predictors, the augmented design matrix including all linear and order-2 terms is of size n × (p2 + 3p)/2. When p is large, say more than tens of hundreds, the number of interactions is enormous and beyond the capacity of standard machines and software tools for storage and analysis. In theory, the interaction selection consistency is hard to achieve in high dimensional settings. Interaction effects have heavier tails and more complex covariance structures than main effects in a random design, making theoretical analysis difficult. In this article, we propose to tackle these issues by forward-selection based procedures called iFOR, which identify interaction effects in a greedy forward fashion while maintaining the natural hierarchical model structure. Two algorithms, iFORT and iFORM, are studied. Computationally, the iFOR procedures are designed to be simple and fast to implement. No complex optimization tools are needed, since only OLS-type calculations are involved; the iFOR algorithms avoid storing and manipulating the whole augmented matrix, so the memory and CPU requirement is minimal; the computational complexity is linear in p for sparse models, hence feasible for p ≫ n. Theoretically, we prove that they possess sure screening property for ultra-high dimensional settings. Numerical examples are used to demonstrate their finite sample performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助111ccc采纳,获得10
1秒前
沐沐发布了新的文献求助10
2秒前
zk200107发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
poppy发布了新的文献求助10
5秒前
von发布了新的文献求助10
6秒前
桐桐应助haning采纳,获得10
6秒前
思源应助孤独女王采纳,获得10
7秒前
111ccc完成签到,获得积分20
7秒前
等晴天发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
10秒前
科研通AI5应助yjj采纳,获得10
10秒前
cysteine发布了新的文献求助10
10秒前
11秒前
Eric800824发布了新的文献求助10
11秒前
wyy发布了新的文献求助10
13秒前
烟花应助ly采纳,获得10
13秒前
随心流浪完成签到,获得积分10
13秒前
NexusExplorer应助uu采纳,获得10
13秒前
司徒不二发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
ZQP发布了新的文献求助10
14秒前
111ccc发布了新的文献求助10
15秒前
欢喜恶天发布了新的文献求助10
15秒前
loyal发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
随心流浪发布了新的文献求助10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794261
求助须知:如何正确求助?哪些是违规求助? 3339153
关于积分的说明 10294350
捐赠科研通 3055765
什么是DOI,文献DOI怎么找? 1676792
邀请新用户注册赠送积分活动 804745
科研通“疑难数据库(出版商)”最低求助积分说明 762098