毛细管数
分手
毛细管作用
粘度
机械
材料科学
体积流量
表面积体积比
缩放比例
纵横比(航空)
体积热力学
剪切速率
微流控
热力学
两相流
流量(数学)
物理
复合材料
数学
几何学
作者
Gordon F. Christopher,Nadia Noharuddin,Joshua A. Taylor,Shelley L. Anna
标识
DOI:10.1103/physreve.78.036317
摘要
An experimental study of droplet breakup in T-shaped microfluidic junctions is presented in which the capillary number and flow rate ratio are varied over a wide range for several different viscosity ratios and several different ratios of the inlet channel widths. The range of conditions corresponds to the region in which both the squeezing pressure that arises when the emerging interface obstructs the channel and the viscous shear stress on the emerging interface strongly influence the process. In this regime, the droplet volume depends on the capillary number, the flow rate ratio, and the ratio of inlet channel widths, which controls the degree of confinement of the droplets. The viscosity ratio influences the droplet volume only when the viscosities are similar. When there is a large viscosity contrast in which the dispersed-phase liquid is at least 50 times smaller than the continuous-phase liquid, the resulting size is independent of the viscosity ratio and no transition to a purely squeezing regime appears. In this case, both the droplet volume and the droplet production frequency obey power-law behavior with the capillary number, consistent with expectations based on mass conservation of the dispersed-phase liquid. Finally, scaling arguments are presented that result in predicted droplet volumes that depend on the capillary number, flow rate ratio, and width ratio in a qualitatively similar way to that observed in experiments.
科研通智能强力驱动
Strongly Powered by AbleSci AI