Self-supported nanotube arrays of sulfur-doped TiO2 on metal substrates are fabricated using electrochemical anodization and subsequent sulfidation. The nanotube arrays can serve as an efficient anode for sodium storage, enabling ultrastable cycling (retaining 91% of the 2nd capacity up to 4400 cycles) and robust rate capability (167 mA h g−1 at 3350 mA g−1), remarkably outperforming any other reported TiO2-based electrodes. As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.