Steering Zeolite Brønsted Acidity and Catalytic Consequence Through Manipulating the Coordination Environment of Framework Aluminum

催化作用 沸石 羟基化 化学 反应性(心理学) 吸附 甲醇 热气腾腾的 密度泛函理论 无机化学 酸强度 化学工程 多相催化 ZSM-5型 金属 脱水 分子 苯酚 分子筛 配位复合体
作者
Youdong Xing,Xianfeng Yi,Fengqing Liu,Yao Xiao,Wanyi Gan,Molly Meng‐Jung Li,Anmin Zheng
出处
期刊:Angewandte Chemie [Wiley]
标识
DOI:10.1002/ange.202518228
摘要

ABSTRACT The strong acidity of Brønsted acid sites in zeolites often leads to uncontrollable reactions and rapid deactivation. Therefore, strategically weakening zeolite acidity is essential for balancing reactivity with stability. The local coordination environment of framework aluminum usually governs its acidity. Hydroxylation of framework aluminum is often inevitable under high‐temperature and humid “working” conditions; however, the impact of hydroxyl coordination on the relevant acidity and catalytic behavior remains unclear. Here, we demonstrate how hydroxylation of framework aluminum strategically moderates acidity and enhances catalytic stability. Density functional theory (DFT) calculations predict that an increase in the hydroxyl groups coordinated to framework aluminum leads to a progressive weakening of Brønsted acidity. We experimentally validate this prediction by precisely manipulating hydroxylation in ZSM‐5 zeolite via steaming treatment and analyzing the effects using 2D NMR spectroscopy with 2– 13 C‐acetone as a probe molecule. The hydroxylated aluminum sites exhibit reduced adsorption and activation of methanol in the dehydration reaction, consistent with their weaker acidity. Catalytic tests reveal that the hydroxylated samples significantly enhance catalyst lifespan in the MTO process, while preserving stable reactivity. These findings provide key insights into how coordination perturbations influence zeolite acidity and catalytic performance, offering valuable guidance for designing zeolites with targeted catalytic functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
逾越发布了新的文献求助10
1秒前
躺平才有生活完成签到,获得积分10
1秒前
hyx9504完成签到,获得积分10
3秒前
Yepp关注了科研通微信公众号
3秒前
4秒前
4秒前
霜叶栩然完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
HuEn关注了科研通微信公众号
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
丘比特应助宇文鹏煊采纳,获得10
9秒前
橙果果完成签到,获得积分10
9秒前
9秒前
9秒前
单薄遥发布了新的文献求助10
10秒前
大模型应助Lignin采纳,获得10
10秒前
yiren完成签到,获得积分10
10秒前
10秒前
11秒前
tf发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
12秒前
12秒前
852应助雀石颓唐采纳,获得10
12秒前
兼善发布了新的文献求助10
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736834
求助须知:如何正确求助?哪些是违规求助? 5368742
关于积分的说明 15334181
捐赠科研通 4880593
什么是DOI,文献DOI怎么找? 2622909
邀请新用户注册赠送积分活动 1571817
关于科研通互助平台的介绍 1528640