假电容器
重量分析
材料科学
超级电容器
电极
电容
石墨烯
制作
纳米技术
氧化物
电容感应
气凝胶
复合材料
光电子学
电气工程
工程类
冶金
化学
物理化学
病理
有机化学
替代医学
医学
作者
Bin Yao,Swetha Chandrasekaran,Jing Zhang,Xiao Wang,Fang Qian,Cheng Zhu,Eric B. Duoss,Christopher M. Spadaccini,Marcus A. Worsley,Yat Li
出处
期刊:Joule
[Elsevier BV]
日期:2018-10-18
卷期号:3 (2): 459-470
被引量:417
标识
DOI:10.1016/j.joule.2018.09.020
摘要
Summary
Retaining sound electrochemical performance of electrodes at high mass loading holds significant importance to energy storage. Pseudocapacitive materials such as manganese oxide (MnO2) deposited on current collectors have achieved outstanding gravimetric capacitances, sometimes even close to their theoretical values. Yet, this is only achievable with very small mass loading of active material typically less than 1 mg cm−2. Increasing mass loading often leads to drastic decay of capacitive performance due to sluggish ion diffusion in bulk material. Here, we demonstrate a 3D printed graphene aerogel electrode with MnO2 loading of 182.2 mg cm−2, which achieves a record-high areal capacitance of 44.13 F cm−2. Most importantly, this 3D printed graphene aerogel/MnO2 electrode can simultaneously achieve excellent capacitance normalized to area, gravimetry, and volume, which is the trade-off for most electrodes. This work successfully validates the feasibility of printing practical pseudocapacitive electrodes, which might revolutionize pseudocapacitor fabrication.
科研通智能强力驱动
Strongly Powered by AbleSci AI