亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Efficient Approach to Remove Thick Cloud in VNIR Bands of Multi-Temporal Remote Sensing Images

VNIR公司 遥感 云计算 像素 土地覆盖 云量 计算机科学 环境科学 一致性(知识库) 计算机视觉 人工智能 地理 土地利用 土木工程 工程类 高光谱成像 操作系统
作者
Wenhui Du,Zhihao Qin,Jinlong Fan,Maofang Gao,Fei Wang,Bilawal Abbasi
出处
期刊:Remote Sensing [MDPI AG]
卷期号:11 (11): 1284-1284 被引量:23
标识
DOI:10.3390/rs11111284
摘要

Cloud-free remote sensing images are required for many applications, such as land cover classification, land surface temperature retrieval and agricultural-drought monitoring. Cloud cover in remote sensing images can be pervasive, dynamic and often unavoidable. Current techniques of cloud removal for the VNIR (visible and near-infrared) bands still encounters the problem of pixel values estimated for the cloudy area incomparable and inconsistent with the cloud-free region in the target image. In this paper, we proposed an efficient approach to remove thick clouds and their shadows in VNIR bands using multi-temporal images with good maintenance of DN (digital number) value consistency. We constructed the spectral similarity between the target image and reference one for DN value estimation of the cloudy pixels. The information reconstruction was done with 10 neighboring cloud-free pair-pixels with the highest similarity over a small window centering the cloudy pixel between target and reference images. Four Landsat5 TM images around Nanjing city of Jiangsu Province in Eastern China were used to validate the approach over four representative surface patterns (mountain, plain, water and city) for diverse sizes of cloud cover. Comparison with the conventional approaches indicates high accuracy of the approach in cloud removal for the VNIR bands. The approach was applied to the Landsat8 OLI (Operational Land Imager) image on 29 April 2016 in Nanjing area using two reference images. Very good consistency was achieved in the resulted images, which confirms that the proposed approach could be served as an alternative for cloud removal in the VNIR bands using multi-temporal images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chen完成签到,获得积分10
1秒前
1秒前
充电宝应助浮浮世世采纳,获得10
2秒前
无奈梦岚完成签到,获得积分10
14秒前
马宁婧完成签到 ,获得积分10
14秒前
17秒前
清尘hm完成签到 ,获得积分10
19秒前
善学以致用应助炸弹采纳,获得10
19秒前
打打应助fan采纳,获得10
20秒前
梦追阳完成签到 ,获得积分10
20秒前
如沐春风发布了新的文献求助10
22秒前
25秒前
上官若男应助马晓武采纳,获得10
25秒前
26秒前
炸弹发布了新的文献求助10
30秒前
usu发布了新的文献求助10
30秒前
李爱国应助如沐春风采纳,获得10
32秒前
乐乐应助Ni采纳,获得10
33秒前
ffff完成签到 ,获得积分10
35秒前
GlockieZhao完成签到,获得积分10
35秒前
研友_VZG7GZ应助usu采纳,获得10
36秒前
37秒前
Criminology34举报mxm求助涉嫌违规
40秒前
Ni发布了新的文献求助10
41秒前
46秒前
48秒前
49秒前
51秒前
MayoCQ完成签到,获得积分10
52秒前
维尼熊发布了新的文献求助10
52秒前
zouzou完成签到,获得积分10
55秒前
灵巧的导师完成签到,获得积分10
55秒前
曦耀发布了新的文献求助10
56秒前
SciGPT应助科研通管家采纳,获得10
1分钟前
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
1分钟前
如沐春风发布了新的文献求助10
1分钟前
1分钟前
Akim应助luwanqing采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611883
求助须知:如何正确求助?哪些是违规求助? 4696013
关于积分的说明 14890175
捐赠科研通 4727522
什么是DOI,文献DOI怎么找? 2545932
邀请新用户注册赠送积分活动 1510337
关于科研通互助平台的介绍 1473236