药品
相互作用体
疾病
计算生物学
药物开发
药物反应
药物重新定位
交互网络
药物靶点
药物发现
医学
生物信息学
计算机科学
药理学
生物
基因
内科学
遗传学
作者
Feixiong Cheng,I. Kovács,Albert László Barabási
标识
DOI:10.1038/s41467-019-09186-x
摘要
Abstract Drug combinations, offering increased therapeutic efficacy and reduced toxicity, play an important role in treating multiple complex diseases. Yet, our ability to identify and validate effective combinations is limited by a combinatorial explosion, driven by both the large number of drug pairs as well as dosage combinations. Here we propose a network-based methodology to identify clinically efficacious drug combinations for specific diseases. By quantifying the network-based relationship between drug targets and disease proteins in the human protein–protein interactome, we show the existence of six distinct classes of drug–drug–disease combinations. Relying on approved drug combinations for hypertension and cancer, we find that only one of the six classes correlates with therapeutic effects: if the targets of the drugs both hit disease module, but target separate neighborhoods. This finding allows us to identify and validate antihypertensive combinations, offering a generic, powerful network methodology to identify efficacious combination therapies in drug development.
科研通智能强力驱动
Strongly Powered by AbleSci AI